Wide-bandgap perovskite solar cells (WBG PSCs) have promising applications in tandem devices yet suffer from low open-circuit voltages (Vs) and less stability. To address these issues, the study introduces multifunctional nicotinamide derivatives into WBG PSCs, leveraging the regulation on photovoltaically preferential orientation and optoelectronic properties via diverse functional groups, e.g.
View Article and Find Full Text PDFThe development of front-side pastes suitable for devices with high sheet resistance such as tunnel oxide passivated contact (TOPCon), is of great significance but remains a considerable challenge. The optimization of the Ag-Si contact interface is crucial for enhancing contact and improving the efficiency of these devices. This work investigates the front-side Ag pastes with low Al content (<2 wt.
View Article and Find Full Text PDFTunnel oxide passivated contact (TOPCon) silicon solar cells are rising as a competitive photovoltaic technology, seamlessly blending high efficiency with cost-effectiveness and mass production capabilities. However, the numerous defects from the fragile silicon oxide/c-Si interface and the low field-effect passivation due to the inadequate boron in-diffusion in p-type polycrystalline silicon (poly-Si) passivated contact reduce their open-circuit voltages (Vs), impeding their widespread application in the promising perovskite/silicon tandem solar cells (TSCs) that hold a potential to break 30% module efficiency. To address this, we have developed a highly passivated p-type TOPCon structure by optimizing the oxidation conditions, boron in-diffusion, and aluminium oxide hydrogenation, thus pronouncedly improving the implied V (iV) of symmetric samples with p-type TOPCon structures on both sides to 715 mV and the V of completed double-sided TOPCon bottom cells to 710 mV.
View Article and Find Full Text PDFDespite recent revolutionary advancements in photovoltaic (PV) technology, further improving cell efficiencies toward their Shockley-Queisser (SQ) limits remains challenging due to inherent optical, electrical, and thermal losses. Currently, most research focuses on improving optical and electrical performance through maximizing spectral utilization and suppressing carrier recombination losses, while there is a serious lack of effective opto-electro-thermal coupled management, which, however, is crucial for further improving PV performance and the practical application of PV devices. In this article, the energy conversion and loss processes of a PV device (with a specific focus on perovskite solar cells) are detailed under both steady-state and transient processes through rigorous opto-electro-thermal coupling simulation.
View Article and Find Full Text PDFHybrid-dimensional heterojunction transistor (HDHT) photodetectors (PDs) have achieved high responsivities but unfortunately are still with unacceptably slow response speeds. Here, we propose a MASnI/MoS HDHT PD, which exhibits the possibility to obtain high responsivity and fast response simultaneously. By exploring the detailed photoelectric responses utilizing a precise optoelectronic coupling simulation, the electrical performance of the device is optimally manipulated and the underlying physical mechanisms are carefully clarified.
View Article and Find Full Text PDFSolid-state self-powered UV detection is strongly required in various application fields to enable long-term operation. However, this requirement is incompatible with conventionally used metal-semiconductor-metal (MSM) UV photodetectors (PDs) due to the symmetric design of Schottky contacts. In this work, a self-powered MSM solar-blind UV-PD was realized using a lateral pn junction architecture.
View Article and Find Full Text PDFTunnel oxide passivating contact (TOPCon) solar cells (SCs) as one of the most competitive crystalline silicon (c-Si) technologies for the TW-scaled photovoltaic (PV) market require higher passivation performance to further improve their device efficiencies. Here, the successful construction of a double-layered polycrystalline silicon (poly-Si) TOPCon structure is reported using an in situ nitrogen (N)-doped poly-Si covered by a normal poly-Si, which achieves excellent passivation and contact properties simultaneously. The new design exhibits the highest implied open-circuit voltage of 755 mV and the lowest single-sided recombination current density (J ) of ≈0.
View Article and Find Full Text PDFIn preparing tunnel oxygen passivation contact (TOPCon) solar cells, the metallization process often causes damage to passivation performance. Aiming to solve the issue, we investigated the advantages of the novel polysilicon, i.e.
View Article and Find Full Text PDFCurrently, the full potential of perovskite solar cells (PSCs) is limited by chargecarrier recombination owing to imperfect passivation methods. Here, the recombination loss mechanisms owing to the interfacial energy offset and defects are quantified. The results show that a favorable energy offset can reduce minority carriers and suppress interfacial recombination losses more effectively than chemical passivation.
View Article and Find Full Text PDFHole transport materials (HTMs) are a key component of perovskite solar cells (PSCs). The small molecular 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9'-spirobifluorene (spiro-OMeTAD, termed "Spiro") is the most successful HTM used in PSCs, but its versatility is imperfect. To improve its performance, we developed a novel spiro-type HTM (termed "DP") by substituting four anisole units on Spiro with 4-methoxybiphenyl moieties.
View Article and Find Full Text PDFDespite the swift rise in power conversion efficiency (PCE) to more than 32%, the instability of perovskite/silicon tandem solar cells is still one of the key obstacles to practical application and is closely related to the residual strain of perovskite films. Herein, a simple surface reconstruction strategy is developed to achieve a global incorporation of butylammonium cations at both surface and bulk grain boundaries by post-treating perovskite films with a mixture of N,N-dimethylformamide and n-butylammonium iodide in isopropanol solvent, enabling strain-free perovskite films with simultaneously reduced defect density, suppressed ion migration, and improved energy level alignment. As a result, the corresponding single-junction perovskite solar cells yield a champion PCE of 21.
View Article and Find Full Text PDFDespite the remarkable rise in the efficiency of perovskite-based solar cells, the stress-induced intrinsic instability of perovskite active layers is widely identified as a critical hurdle for upcoming commercialization. Herein, a long-alkyl-chain anionic surfactant additive is introduced to chemically ameliorate the perovskite crystallization kinetics via surface segregation and micellization, and physically construct a glue-like scaffold to eliminate the residual stresses. As a result, benefiting from the reduced defects, suppressed ion migration and improved energy level alignment, the corresponding unencapsulated perovskite single-junction and perovskite/silicon tandem devices exhibit impressive operational stability with 85.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2023
Self-driven narrowband perovskite photodetectors have recently attracted significant attention due to their simple preparation, high performance, and amenability for system integration. However, the origin of narrowband photoresponse and the related regulation mechanisms still remains elusive. To address these issues, we herein perform a systematic investigation by formulating an analytic model in conjunction with finite element simulation.
View Article and Find Full Text PDFBackground: The middle turbinate axilla (MTA) has always been used as a stable anatomic landmark for endoscopic surgeons to locate the lacrimal sac on the lateral nasal wall. Yet, little is known about whether the lacrimal sac size will affect the positioning effect of MTA on lacrimal sac. The aim of this study was to investigate the regularity of lacrimal sac size and lacrimal sac localization through the reference position of the MTA on computed tomographic dacryocystography (CT-DCG) images.
View Article and Find Full Text PDFWe demonstrate experimentally a flexible crystalline silicon (c-Si) solar cell (SC) based on dopant-free interdigitated back contacts (IBCs) with thickness of merely 50 µm for, to the best of our knowledge, the first time. A MoO thin film is proposed to cover the front surface and the power conversion efficiency (PCE) is boosted to over triple that of the uncoated SC. Compared with the four-time thicker SC, our thin SC is still over 77% efficient.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
June 2021
Objective: Previous research found that autism spectrum disorder (ASD) was characterized by eye avoidance of threatening facial expressions. However, it still remains unclear as to whether these abnormalities are present in parents of children with ASD. Our study aimed to investigate the gaze patterns of parents of children with ASD in the threatening facial expressions.
View Article and Find Full Text PDFAchieving efficient passivating carrier-selective contacts (PCSCs) plays a critical role in high-performance photovoltaic devices. However, it is still challenging to achieve both an efficient carrier selectivity and high-level passivation in a sole interlayer due to the thickness dependence of contact resistivity and passivation quality. Herein, a light-promoted adsorption method is demonstrated to establish high-density Lewis base polyethylenimine (PEI) monolayers as promising PCSCs.
View Article and Find Full Text PDFTo unlock the full potential of the perovskite solar cell (PSC) photocurrent density and power conversion efficiency, the topic of optical management and design optimization is of absolute importance. Here, we propose a gradient-index optical design of the PSC based on a Gaussian-type front-side glass structure. Numerical simulations clarify a broadband light-harvesting response of the new design, showing that a maximal photocurrent density of 23.
View Article and Find Full Text PDFThe optical properties of hexagonal GaN microdisk arrays grown on sapphire substrates by selective area growth (SAG) technique were investigated both experimentally and theoretically. Whispering-gallery-mode (WGM) lasing is observed from various directions of the GaN pyramids collected at room temperature, with the dominant lasing mode being Transverse-Electric (TE) polarized. A relaxation of compressive strain in the lateral overgrown region of the GaN microdisk is illustrated by photoluminescence (PL) mapping and Raman spectroscopy.
View Article and Find Full Text PDFEnhanced photoluminescence and improved internal quantum efficiency were demonstrated for ultraviolet light emitting diodes (UV-LEDs) with Al nanohole arrays deposited on the top surface. The effects of the thickness and periodicity of the plasmonic structures on the optical properties of UV-LEDs were studied, and an optimized nanohole array parameter was illustrated. Classical electrodynamic simulations showed that the radiated power is mostly concentrated along the edge of the Al nanohole arrays.
View Article and Find Full Text PDFBy combining the most successful heterojunctions (HJ) with interdigitated back contacts, crystalline silicon (c-Si) solar cells (SCs) have recently demonstrated a record efficiency of 26.6%. However, such SCs still introduce optical/electrical losses and technological issues due to parasitic absorption/Auger recombination inherent to the doped films and the complex process of integrating discrete p- and n-HJ contacts.
View Article and Find Full Text PDFSurface nanotexturing with excellent light-trapping property is expected to significantly increase the conversion efficiency of solar cells. However, limited by the serious surface recombination arising from the greatly enlarged surface area, the silicon (Si) nanotexturing-based solar cells cannot yet achieve satisfactory high efficiency, which is more prominent in organic/Si hybrid solar cells (HSCs) where a uniform polymer layer can rarely be conformably coated on nanotextured substrate. Here, the HSCs featuring advanced surface texture of periodic upright nanopyramid (UNP) arrays and hole-conductive conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), are investigated.
View Article and Find Full Text PDFCarrier recombination and light management of the dopant-free silicon/organic heterojunction solar cells (HSCs) based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are the critical factors in developing high-efficiency photovoltaic devices. However, the traditional passivation technologies can hardly provide efficient surface passivation on the front surface of Si. In this study, a photoinduced electric field was induced in a bilayer antireflective coating (ARC) of polydimethylsiloxane (PDMS) and titanium oxide (TiO) films, due to formation of an accumulation layer of negative carriers (O species) under UV (sunlight) illumination.
View Article and Find Full Text PDFRecently, silicon single nanowire solar cells (SNSCs) serving as the sustainable self-power sources have been integrated into optoelectronic nanodevices under the driver of technology and economy. However, conventional SNSC cannot provide the minimum energy consumption for the operation of nanodevices due to its low power conversion efficiency (PCE). Here, we propose an innovative approach to combine the n-type silicon nanowires (SiNWs) with p-type poly(3,4-ethylthiophene):poly(styrenesulfonate) (PEDOT:PSS) to form the p n heterojunction, which shows superior opto-electric performances.
View Article and Find Full Text PDF