Publications by authors named "Zhengyu Pang"

Over the last 15 years, advances in immunofluorescence-imaging based cycling methods, antibody conjugation methods, and automated image processing have facilitated the development of a high-resolution, multiplexed tissue immunofluorescence (MxIF) method with single cell-level quantitation termed Cell DIVE. Originally developed for fixed oncology samples, here it was evaluated in highly fixed (up to 30 days), archived monkeypox virus-induced inflammatory skin lesions from a retrospective study in 11 rhesus monkeys to determine whether MxIF was comparable to manual H-scoring of chromogenic stains. Six protein markers related to immune and cellular response (CD68, CD3, Hsp70, Hsp90, ERK1/2, ERK1/2 pT202_pY204) were manually quantified (H-scores) by a pathologist from chromogenic IHC double stains on serial sections and compared to MxIF automated single cell quantification of the same markers that were multiplexed on a single tissue section.

View Article and Find Full Text PDF

The phenotypic diversity of cancer results from genetic and nongenetic factors. Most studies of cancer heterogeneity have focused on DNA alterations, as technologies for proteomic measurements in clinical specimen are currently less advanced. Here, we used a multiplexed immunofluorescence staining platform to measure the expression of 27 proteins at the single-cell level in formalin-fixed and paraffin-embedded samples from treatment-naive stage II/III human breast cancer.

View Article and Find Full Text PDF
Article Synopsis
  • A multiplex assay was developed to detect 8 breast cancer biomarkers on a single tissue slide using staining and imaging technologies from General Electric.
  • An unexpected membranous staining of Ki-67 was found to be an artifact resulting from the binding of two antibodies in the multiplexing process.
  • By blocking with rabbit serum, researchers established a successful method to multiplex the biomarkers without any antibody cross-reactivity.
View Article and Find Full Text PDF
Article Synopsis
  • A new multiplexed immunofluorescence technology allows for detailed imaging of multiple breast cancer biomarkers on a single tissue sample, focusing on cellular interactions and co-expression.
  • The method involves an automated microfluidic flow cell for efficient staining and imaging, and has been tested on a small number of breast tumors to compare with traditional methods.
  • This approach shows consistent results with conventional immunohistochemistry and offers improved accuracy and the ability to visualize more biomarkers within the same tissue sample.
View Article and Find Full Text PDF

Quantitative fluorescence microscopy is severely hindered by intrinsic autofluorescence (AF). Endogenous fluorescent molecules in tissue and cell samples emit fluorescence that often dominates signals from specific dyes. This makes AF removal critical to the development and practice of quantitative fluorescence microscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Limitations in identifying unique proteins and DNA in tissue samples hinder our understanding of health and disease.
  • The multiplexed fluorescence microscopy method (MxIF) allows for detailed analysis of multiple biological markers in tissue samples by chemically inactivating fluorescent dyes after imaging to enable reuse.
  • MxIF demonstrates similar accuracy to traditional methods in identifying protein markers while revealing significant diversity in cancer cells, paving the way for advancements in research and diagnostics.
View Article and Find Full Text PDF

Endothelial cell (EC) seeding represents a promising approach to provide a nonthrombogenic surface on vascular grafts. In this study, we used a porcine EC/smooth muscle cell (SMC) coculture model that was previously developed to examine the efficacy of EC seeding. Expression of tissue factor (TF), a primary initiator in the coagulation cascade, and TF activity were used as indicators of thrombogenicity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between the hepatocyte growth factor receptor (Met) and colon cancer survival, highlighting limitations of traditional detection methods like immunohistochemistry (IHC).
  • Researchers employed a more advanced fluorescent-based IHC technique on a large sample of 583 colon cancer patients, using automated image analysis to differentiate Met levels in membrane, cytoplasm, and nuclear compartments.
  • Results showed that the membrane-to-cytoplasm Met score is a significant predictor of survival, especially in stage I and II colon cancer patients, suggesting that assessing Met's subcellular distribution could improve prognosis estimates.
View Article and Find Full Text PDF

An image based assay has been developed to quantify platelet adhesion on material surfaces. Briefly, citrated platelet rich plasma (PRP) is incubated with materials for 2 h to allow platelet adhesion on the surface, followed by fluorescence labeling of platelets with Celltracker Green. Multiple images are acquired by an automatic fluorescence microscope, IN Cell Analyzer 1000.

View Article and Find Full Text PDF

Human umbilical vein endothelial cells (HUVECs) display hydraulic conductivity (L(P)) responses to shear stress that differ markedly from the responses of bovine aortic endothelial cells (BAECs). In HUVECs, 5, 10, and 20 dyn cm(-2) steady shear stress transiently increased L(P) with a return to preshear baseline after a 2-h exposure to shear stress. Pure oscillatory shear stress of 0 +/- 20 dyn cm(-2) (mean+/-amplitude) had no effect on L(P), whereas superposition of oscillatory shear stress on steady shear stress suppressed the effect induced by steady shear stress alone.

View Article and Find Full Text PDF

The development of a functional, adherent endothelium is one of the major factors limiting the successful development of tissue engineered vascular grafts (TEVGs). The adhesion and function of endothelial cells (ECs) on smooth muscle cells (SMCs) are poorly understood. The goal of this research was to optimize conditions for the direct culture of endothelium on SMCs, and to develop an initial assessment of co-culture on EC function.

View Article and Find Full Text PDF

The objective of this study was to test whether a glycosaminoglycan component of the surface glycocalyx layer is a fluid shear stress sensor on endothelial cells (ECs). Because enhanced nitric oxide (NO) production in response to fluid shear stress is a characteristic and physiologically important response of ECs, we evaluated NOx (NO2- and NO3-) production in response to fluid shear stress after enzymatic removal of heparan sulfate, the dominant glycosaminoglycan of the EC glycocalyx, from cultured ECs. The significant NOx production induced by steady shear stress (20 dyne/cm2) was inhibited completely by pretreatment with 15 mU/mL heparinase III (E.

View Article and Find Full Text PDF

Starling's hypothesis that fluid movement across the microvascular wall is determined by the transmural differences in hydrostatic and osmotic pressures was tested using an in vitro model comprised of bovine aortic endothelial cells grown on a porous support. In all experiments, a 1% bovine serum albumin (BSA) solution was maintained in the abluminal reservoir and the luminal reservoir contained either a 1 or a 5.5% BSA solution.

View Article and Find Full Text PDF