Publications by authors named "Zhengyong Xu"

The development of a photoelectrode featuring both excellent reusability and a simple preparation process remains exceptionally challenging for TiO-based photoelectrocatalytic technology. Herein, a three-dimensional photoelectrode with N doping, oxygen vacancies (O), and carbon layers (NTC) was prepared via the "carbothermal reduction-pressing-calcination" method. The photoelectrode degraded 97.

View Article and Find Full Text PDF

Microplastics (MPs) are of particular concern due to their ubiquitous occurrence and propensity to interact and concentrate various waterborne contaminants from aqueous surroundings. Studies on the interaction and joint toxicity of MPs on engineered nanoparticles (ENPs) are exhaustive, but limited research on the effect of MPs on the properties of ENPs in multi-solute systems. Here, the effect of MPs on adsorption ability of ENPs to antibiotics was investigated for the first time.

View Article and Find Full Text PDF

Biochar is a porous carbon material generated by the thermal treatment of biomass under anaerobic or anoxic conditions with wealthy Oxygen-containing functional groups (OCFGs). To date, OCFGs of biochar have been extensively studied for their significant utility in pollutant removal, catalysis, capacitive applications, etc. This review adopted a whole system philosophy and systematically summarizes up-to-date knowledge of formation, detection methods, engineering, and application for OCFGs.

View Article and Find Full Text PDF

Environmental pollution has drawn forth advanced materials and progressive techniques concentrating on sustainable development. Metal-organic frameworks (MOFs) have aroused vast interest resulting from their excellent property in structure and function. Conversely, powdery MOFs in highly crystalline follow with fragility, poor processability and recoverability.

View Article and Find Full Text PDF

The application of traditional powder catalysts is limited by particle agglomeration and difficult recovery. In this work, a three-dimensional porous aerogel catalyst for organic pollutants degradation in water by activating peroxydisulfate (PDS) was successfully synthesized, which was obtained via directly mixing of MIL-88B(Fe) with sol precursors followed by vacuum freeze-drying and low-temperature calcination. MIL-88B(Fe)/gelatin aerogel-150/PDS (MGA-150/PDS) system displayed satisfactory norfloxacin (NOR) degradation performance, which could remove 98.

View Article and Find Full Text PDF

This study explored the fate of mobile genetic elements (MGEs) in anaerobic digestion (AD) system with four nanoparticles (NPs) added, including carbon NPs, AlO NPs, ZnO NPs, and CuO NPs. 16S rRNA amplicon sequencing and quantitative PCR to investigate the microbial community, MGEs abundance and the potential host in the AD process. The results of high-throughput sequencing showed that ZnO NPs and CuO NPs significantly reduced the microbial diversity and significantly changed the microbial community structure.

View Article and Find Full Text PDF

Compared with the transition metal induced homogeneous catalytic system, the heterogeneous catalytic system based on transition metal-doped metal organic frameworks (MOFs) were stable for the efficient utilization of transition metal and avoiding the metal leaching. The aim of this work is to synthesize Co-doped MIL-53(Al) by one-step solvent thermal method and use it to activate peroxymonosulfate (PMS) to remove tetracycline (TC) in water. The successful synthesis of Co-MIL-53(Al) samples was demonstrated by XDR, SEM and FTIR characterizations.

View Article and Find Full Text PDF

The widespread use of triclocarban (TCC) has led to its substantial release into aquatic environment. As an important microbial community in wastewater treatment, denitrifying cultures likely remove TCC and also may be affected by TCC which has not been revealed. This work therefore aims to add knowledge to these questions.

View Article and Find Full Text PDF

N-doped nanoporous carbon (NC) with two-dimensional structure derived from Zn-ZIF-L via KCl exfoliation and carbonization at different temperature were prepared for adsorptive removal of tetracycline (TC). Characterizations revealed the effective dopant of N atoms and low degree of graphitization with more defects related to the enhanced adsorption capacity of the NC materials. Benefiting from the huge surface area (2195.

View Article and Find Full Text PDF

Herein, Mn-doped MIL-53(Fe) were fabricated via one-pot solvothermal method and used for peroxymonosulfate (PMS) activation towards tetracycline (TC) degradation from aqueous solution. The characterizations of SEM, FTIR and XRD were utilized to reveal the morphology and structure of the materials. The results showed that Mn-MIL-53(Fe)-0.

View Article and Find Full Text PDF
Article Synopsis
  • - In China, fine particulate matter (PM) from industrial activities poses serious health risks, prompting a need for better assessments of its impact based on industrial land layouts.
  • - A study developed a framework to analyze health and economic effects of PM exposure by optimizing industrial emissions in Changsha, aiming to reduce public health costs.
  • - The findings showed that an improved industrial layout could significantly decrease PM-related mortality by 60.8% and save about $0.69 billion by 2030, emphasizing the importance of emission location and population density in minimizing health impacts.
View Article and Find Full Text PDF

The experiment was carried out in a sequencing batch reactor (SBR), using granular sludge with 90% shortcut nitrification accumulation ratio, which had been cultivated by the laboratory to seed the reactor. The effects of temperature on characteristics, stability, nitrogen conversion properties and activity of short-cut nitrification granular sludge were investigated. The results show that the temperature has a significant influence on structure and short-cut nitrification performance of short-cut nitrification granular sludge.

View Article and Find Full Text PDF

The method of continuous thermophilic composting (CTC) remarkably shortened the active composting cycle and enhanced the compost stability. Effects of CTC on the quantities of bacteria, with a comparison to the traditional composting (TC) method, were explored by plate count with incubation at 30, 40 and 50°C, respectively, and by quantitative PCR targeting the universal bacterial 16S rRNA genes and the Bacillus 16S rRNA genes. The comparison of cultivatable or uncultivatable bacterial numbers indicated that CTC might have increased the biomass of bacteria, especially Bacillus spp.

View Article and Find Full Text PDF

Through controlling the concentration of free ammonia in the sequencing batch reactor (SBR), the single-stage autotrophic biological nitrogen removal process was achieved, including partial nitrification and anaerobic ammonium oxidation. The experiment was completed via two steps, the enrichment of nitrite bacteria and the inoculation of the mixture of anammox biomass. The operating temperature in the SBR was (31 +/- 2) degrees C.

View Article and Find Full Text PDF

This study aims at evaluating the impacts of PAM addition on activated sludge performance. Four lab-scale sequencing batch reactors (SBRs), each with a working volume of 3L, were investigated with different PAM concentrations. Experiments were conducted with varying organic loading rate and the sludge volume index (SVI), particle size, zeta potential, specific oxygen uptake rate (SOUR), mixed liquor suspended solids (MLSS), COD and ammonium removal efficiency were monitored over a 105-day period.

View Article and Find Full Text PDF

Actinomycetes degrade cellulose and solubilize lignin during composting. Changes in the diversity of the actinomycetal communities and the 16S rDNA copy numbers of actinomycetes were monitored by denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR), respectively, during continuous thermophilic composting (CTC) and traditional composting (TC). qPCR indicated that the copy numbers from the CTC samples were 25-80% higher than those from the TC samples during similar phases of active composting and they were lower than 3×10(9) gene copies/g (dry weight) in the mature compost from both runs.

View Article and Find Full Text PDF

A biological treatment with the integration of partial nitrification, anaerobic ammonium oxidation (Anammox) and heterotrophic denitrification was successfully developed in a SBR with periodical air supply to treat landfill leachate. An operating temperature of 30+/-1 degrees C and a dissolved oxygen concentration within 1.0-1.

View Article and Find Full Text PDF

Fewer and fewer municipal solid wastes are treated by composting in China because of the disadvantages of enormous investment, long processing cycle and unstable products in a conventional composting treatment. In this study, a continuous thermophilic composting (CTC) method, only a thermophilic phase within the process, has been applied to four bench-scale composting runs, and further compared with a conventional composting run by assessing the indexes of pH, total organic carbon (TOC), total Kjeldahl nitrogen (TKN), C/N ratio, germination index (GI), specific oxygen uptake rate (SOUR), dissolved organic carbon (DOC) and dehydrogenase activity. After composting for 14 days, 16 days, 18 days and 19 days in the four CTC runs, respectively, mature compost products were obtained, with quality similar to or better than which had been stabilized for 28 days in run A.

View Article and Find Full Text PDF

The difference of sequencing batch biofilm reactor (SBBR) performance and nitrogen transformation mechanism which caused by four different influent patterns were researched. Through variance analysis of SBBR performance, microbial community structure and nitrogen transformation, the results indicated that, on the one hand the dispersed influent pattern displayed higher anti-load ability than the centralized one, under the same efficiency, COD and ammonia load of the dispersed M4 reached 2540 mg x (L x d)(-1) and 540 mg x (L x d)(-1) respectively compared with 2000 mg x (L x d)(-1) and 420 mg x (L x d)(-1) by the centralized M1; on the other hand, considering the dispersed influent pattern, the closer influent mood was to the cycle mood of operation, the higher the nitrogen transformation efficiency was, which finally led residual nitrogen concentration declined.

View Article and Find Full Text PDF

At the high level of dissolved oxygen (DO) in sequencing batch biofilm reactor (SBBR), the approach and mechanism for realizing shortcut nitrification were researched. Landfill leachate was used as handling of object, the mainly environment parameters of the reactor were controlled as follow: DO 5 mg/L, pH 7.0, temperature 25 degrees C, adopted all drainage mode and 12-hour cycle influent.

View Article and Find Full Text PDF

The conventional microorganism techniques and the molecule biological techniques such as PCR and DGGE were utilized to study the approaches of biological nitrogen removal in a single sequencing batch biofilm reactor (SBBR). The main approach of biological nitrogen removal, no less than 65% of the total NH4(+)-N was removed in this approach, was composed of partial nitrification, anaerobic ammonium oxidation and denitrification. The second approach included twain processes such as partial nitrification and denitrification, and the third one was conventional nitrogen removal process (nitrification and denitrification).

View Article and Find Full Text PDF

For studying the bacterial diversity and the mechanism of denitrification in sequencing bath biofilm reactor (SBBR) treating landfill leachate to provide microbial evidence for technique improvements, total microbial DNA was extracted from samples which were collected from natural landfill leachate and biofilm of a SBBR that could efficiently remove NH4+ -N and COD of high concentration. 16S rDNA fragments were amplified from the total DNA successfully using a pair of universal bacterial 16S rDNA primer, GC341F and 907R, and then were used for denaturing gradient gel electrophoresis (DGGE) analysis. The bands in the gel were analyzed by statistical methods and excided from the gel for sequencing, and the sequences were used for homology analysis and then two phylogenetic trees were constructed using DNAStar software.

View Article and Find Full Text PDF