The shortage of available water resources and climate change are major factors affecting agricultural irrigation. In order to improve the irrigation water use efficiency, it is necessary to predict the water requirements for crops in advance. Reference evapotranspiration (ETo) is a hypothetical standard reference crop evapotranspiration, many types of artificial intelligence models have been applied to predict ETo; However, there are still few in the literature regarding the application of hybrid models for deep learning model parameters optimization.
View Article and Find Full Text PDFA novel and efficient enzymatic glucose sensor was fabricated based on FeO magnetic nanoparticles (FeOMNPs)-modified urchin-like ZnO nanoflowers (ZnONFs). ZnONFs were hydrothermally synthesizing on a flexible PET substrate. FeOMNPs were deposited on the surface of the ZnONFs by the drop-coating process.
View Article and Find Full Text PDFAiming at the problems of over stacking, warping deformation and rapid adjustment of layer thickness in electron beam additive manufacturing, the 3D printing slicing algorithm and partition scanning strategy for numerical control systems are studied. The GPU (graphics processing unit) is used to slice the 3D model, and the STL (stereolithography) file is calculated in parallel according to the normal vector and the vertex coordinates. The voxel information of the specified layer is dynamically obtained by adjusting the projection matrix to the slice height.
View Article and Find Full Text PDFSix CuO/ZnO nanorod (CuO/ZnONR)-based microfluidic reactors were constructed for different UV irradiation durations, with which an aqueous methylene blue (MB) solution was photodegraded at varied volume flow rate . Via numerical and experimental routes, the effects of the on the kinetic adsorption rate constant and the initial rate constant of the CuO/ZnONR-based microfluidic reactors were discussed. Moreover, a reverse contacting angle (CA) trend of CuO/ZnONRs to the reaction constant curve of corresponding CuO/ZnONR-based microfluidic reactor suggested that the CA of CuO/ZnONRs was another key influencing factor that affected greatly the photodegradation performance of the microfluidic reactors.
View Article and Find Full Text PDFCarbon-based nanomaterials with carboxylation or chemical modification are widely used as electron-ion exchangers of solid electrodes. For reducing the complexity and dangerousness of the intermediate layer preparation, different original carbon-based nanomaterials are dispersed in deionized water. They are applied in the fabrication of Pb-selective electrodes.
View Article and Find Full Text PDFTungsten has been widely used in many industrial fields due to its excellent properties. However, owing to its characteristics of inherent brittleness at room temperature and high melting point, it is difficult to prepare tungsten parts with high complexity via traditional methods. In the present work, tungsten samples were prepared by laser powder bed fusion.
View Article and Find Full Text PDFTo improve the single-layer all-solid-state ion selective electrode' defects including poor conductivity of PVC sensitive membrane and interference of water layer between substrate electrode and sensitive membrane, a double-layer all-solid-state ion selective electrode with nanomaterial as the solid contact layer and conductive polymer as the ion sensitive membrane was developed. A gold nanoparticles solid contact layer and a nitrate-doped polypyrrole molecularly imprinted polymer membrane were prepared by electrodeposition. The optimal parameters obtained by electrochemical performance test were 2.
View Article and Find Full Text PDFBiomech Model Mechanobiol
October 2020
The process of cell seeding within a porous scaffold is an essential first step in the development of tissue-engineered bone grafts. Understanding the underlying mechanisms of cell distribution and adhesion is fundamental for the design and optimization of the seeding process. To that end, we present a numerical model to investigate the perfusion cell seeding process that incorporates cell mechanics, cell-fluid interaction, and cell-scaffold adhesion.
View Article and Find Full Text PDFAdhesion dynamics of cells is of great value to biological systems and adhesion-based biomedical applications. Although adhesion of a single cell or capsule has been widely studied, physical insights into the adhesion dynamics of aggregates containing two or more cells remain elusive. In this paper, we numerically investigate the dynamic adhesion of a deformable cell pair to a flat substrate under shear flow.
View Article and Find Full Text PDFZnO nanorods (ZnONRs) were hydrothermally synthesized on stainless-steel wire (SSW) sieves of various mesh sizes at different Zn concentrations of the growth solution, and then treated with stearic acid (SA) for a specific duration. Using these SSW sieve-supported ZnONRs, a mixture of de-ionized (DI) water and diesel oil was separated. It was found that the SA treatment dramatically diminished the quantity of surface hydroxyl groups attached to the top and upper portions of the ZnONRs, and thus significantly enhanced the hydrophobicity of the ZnONR-coated SSW sieves.
View Article and Find Full Text PDFIn this paper, the performance of a zinc oxide (ZnO) nanorod-based enzymatic glucose sensor was enhanced with silver (Ag)-doped ZnO (ZnO-Ag) nanorods. The effect of the doped Ag on the surface morphologies, wettability, and electron transfer capability of the ZnO-Ag nanorods, as well as the catalytic character of glucose oxidase (GOx) and the performance of the glucose sensor was investigated. The results indicate that the doped Ag slightly weakens the surface roughness and hydrophilicity of the ZnO-Ag nanorods, but remarkably increases their electron transfer ability and enhances the catalytic character of GOx.
View Article and Find Full Text PDFCellular adhesion plays a critical role in biological systems and biomedical applications. Cell deformation and biophysical properties of adhesion molecules are of significance for the adhesion behavior. In the present work, dynamic adhesion of a deformable capsule to a planar substrate, in a linear shear flow, is numerically simulated to investigate the combined influence of membrane deformability (quantified by the capillary number) and bond formation/dissociation rates on the adhesion behavior.
View Article and Find Full Text PDF