HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15) acts as a substrate receptor of E3 ligase complex, which plays a negative role in drought stress tolerance. However, whether and how HOS15 participates in controlling important transcriptional regulators remains largely unknown. Here, we report that HOS15 physically interacts with and tightly regulates DROUGHT-INDUCED LIKE 19 (DIL9) protein stability.
View Article and Find Full Text PDFEpigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits.
View Article and Find Full Text PDFAttention deficit hyperactivity disorder (ADHD), affecting 4% of the population, is characterized by inattention, hyperactivity, and impulsivity; however, its neurophysiological mechanisms remain unclear. Here, we discovered that deficiency of histamine H receptor (HR) in parvalbumin-positive neurons in substantia nigra pars recticulata (PV) attenuates PV neuronal activity and induces hyperactivity, impulsivity, and inattention in mice. Moreover, decreased HR expression was observed in PV in patients with ADHD symptoms and dopamine-transporter-deficient mice, whose behavioral phenotypes were alleviated by HR agonist treatment.
View Article and Find Full Text PDFTranscription factor OsGRAS2 regulates salt stress tolerance and yield in rice. Plant-specific GRAS transcription factors are involved in many different aspects of plant growth and development, as well as in biotic and abiotic stress responses, although whether and how they participate in salt stress tolerance in rice (Oryza sativa) remains unclear. A screen of a previously generated set of activation-tagged lines revealed that Activation Tagging Line 63 (AC63) displayed a salt stress-sensitive phenotype.
View Article and Find Full Text PDFIn recent years, nanomaterials have gained widespread use in the biomedical field, with ZIF-8 and ZnO emerging as promising candidates due to their remarkable performance in osteogenesis, angiogenesis, and antimicrobial therapy. However, before advancing these nanomaterials for clinical applications, it is imperative to evaluate their biocompatibility. In particular, comparing nanomaterials with similar biomedical functions is crucial for identifying the most suitable nanomaterials for further development and market entry.
View Article and Find Full Text PDFThe homolog gene of the Growth Arrest and DNA Damage-inducible 45 (GADD45) in rice functions in the regulation of plant architecture, grain yield, and blast resistance. The Growth Arrest and DNA Damage-inducible 45 (GADD45) family proteins, well-established stress sensors and tumor suppressors in mammals, serve as pivotal regulators of genotoxic stress responses and tumorigenesis. In contrast, the homolog and role of GADD45 in plants have remained unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2024
B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family genes play prominent roles in regulating plant growth, development, and stress response. Although the molecular mechanism underlying BAG's response to abiotic stress has been studied in Arabidopsis, the function of OsBAG underlying saline-alkaline stress tolerance in rice remains unclear. In this study, OsBAG6, a chaperone regulator localized to mitochondria, was identified as a novel negative regulator of saline-alkaline stress tolerance in rice.
View Article and Find Full Text PDFAutophagy receptor OsNBR1 modulates salt stress tolerance by affecting ROS accumulation in rice. The NBR1 (next to BRCA1 gene 1), as important selective receptors, whose functions have been reported in animals and plants. Although the function of NBR1 responses to abiotic stress has mostly been investigated in Arabidopsis thaliana, the role of NBR1 under salt stress conditions remains unclear in rice (Oryza sativa).
View Article and Find Full Text PDFA novel function of plasma membrane-localized H-ATPase, OsAHA3, was identified in rice, which is involved in saline-alkaline tolerance and specifically responds to high pH during saline-alkaline stress. Saline-alkaline stress causes serious damage to crop production on irrigated land. Plants suffer more severe damage under saline-alkaline stress than under salinity stress alone.
View Article and Find Full Text PDFSoil salinity severely limits crop yields and quality. Plants have evolved several strategies to mitigate the adverse effects of salinity, including redistribution and compartmentalization of toxic ions using ion-specific transporters. However, the mechanisms underlying the regulation of these ion transporters have not been fully elucidated.
View Article and Find Full Text PDFObjectives: Dental pulp tissue is highly vascularized. However, age-related vascular changes of the dental pulp in mice and humans remain poorly understood. We modified a novel tissue clearing method, mapped the vasculature, pericytes, and perivascular matrix in the dental pulp via high-resolution 3D imaging.
View Article and Find Full Text PDFThe regulation of microRNA (miRNA) biogenesis is crucial for maintaining plant homeostasis under biotic and abiotic stress. The crosstalk between the RNA polymerase II (Pol-II) complex and the miRNA processing machinery has emerged as a central hub modulating transcription and cotranscriptional processing of primary miRNA transcripts (pri-miRNAs). However, it remains unclear how miRNA-specific transcriptional regulators recognize MIRNA loci.
View Article and Find Full Text PDFCardiovascular disease is one of the leading threats to human lives and its fatality rate still rises gradually year by year. Driven by the development of advanced information technologies, such as big data, cloud computing, and artificial intelligence, remote/distributed cardiac healthcare is presenting a promising future. The traditional dynamic cardiac health monitoring method based on electrocardiogram (ECG) signals only has obvious deficiencies in comfortableness, informativeness, and accuracy under motion state.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
July 2023
One specific capillary subtype, termed type H vessel, has been found with unique functional characteristics in coupling angiogenesis with osteogenesis. Researchers have fabricated a variety of tissue engineering scaffolds to enhance bone healing and regeneration through the accumulation of type H vessels. However, only a limited number of reviews discussed the tissue engineering strategies for type H vessel regulation.
View Article and Find Full Text PDFBone defects are a common bone disease, which are usually caused by accidents, trauma and tumors. However, the treatment of bone defects is still a great clinical challenge. In recent years, research on bone repair materials has continued with great success, but there are few reports on the repair of bone defects at a high lipid level.
View Article and Find Full Text PDFArabidopsis HOS15/PWR/HDA9 repressor complex, which is similar to the TBL1/NcoR1/HDAC complex in animals, plays a well-known role in epigenetic regulation. PWR and HDA9 have been reported to interact with each other and modulate the flowering time by repressing expression, whereas HOS15 and HDA9, together with the photoperiodic evening complex, regulate flowering time through repression of GI transcription. However, the role of the HOS15/PWR/HDA9 core repressor complex as a functional unit in the regulation of flowering time is yet to be explored.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a group of small, single-stranded, non-coding RNAs approximately 22 nucleotides in length. The dysregulation of miRNAs has been widely investigated in various pathological processes, including tumorigenesis, providing a biomarker for cancer diagnosis and prognosis. As a member of the miRNA family, miR-574-5p is located on the human chromosome 4p14 and is highly correlated with a high incidence of human cancers.
View Article and Find Full Text PDFInt J Biol Macromol
March 2023
High yield and stress resistance are the major prerequisites for successful crop cultivation, and can be achieved by modifying plant architecture. Evolutionarily conserved growth-regulating factors (GRFs) control the growth of different tissues and organs of plants. Here, we provide a systematic overview of the expression patterns of GRF genes and the structural features of GRF proteins in different plant species.
View Article and Find Full Text PDFThe salinization of irrigated land affects agricultural productivity. HIGH-AFFINITY POTASSIUM (K ) TRANSPORTER 1;5 (OsHKT1;5)-dependent sodium (Na ) transport is a key salt tolerance mechanism during rice growth and development. Using a previously generated high-throughput activation tagging-based T-DNA insertion mutant pool, we isolated a mutant exhibiting salt stress-sensitive phenotype, caused by a reduction in OsHKT1;5 transcripts.
View Article and Find Full Text PDF