Solubility largely determines the impacts of aerosol Fe on marine ecosystems and human health. Currently, modeling studies have large uncertainties in aerosol Fe solubility due to inadequate understanding of the sources of dissolved Fe. This work investigated seasonal variations of Fe solubility in coarse and fine aerosols in Qingdao, a coastal city in the Northwest Pacific, and utilized a receptor model for source apportionment of total and dissolved aerosol Fe.
View Article and Find Full Text PDFJ Environ Sci (China)
February 2025
Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH concentrations.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2019
Shape analysis is an important method used in neuroimaging research community due to its potential to precisely locate morphological changes between healthy and pathological structures. A popular shape analysis framework in the neuroimaging community is based on the encoding surface locations as spherical harmonics for a representation called SPHARM-PDM. The SPHARM-PDM pipeline takes a set of brain segmentation of a single brain structure (for example, hippocampus) as input and converts them into a corresponding spherical harmonic description (SPHARM), which is then sampled into triangulated surface (SPHARM-PDM).
View Article and Find Full Text PDF