Publications by authors named "Zhengxun Song"

Excessive accumulation of white adipose tissue leads to metabolic disorders, and the excessive differentiation of preadipocytes into white adipocytes is one of the contributing factors to obesity. The browning of white adipocytes has been regarded as a promising therapeutic strategy. To analyze the origins and potential solutions for obesity from a fundamental perspective, we employed atomic force microscopy, and Raman confocal microscopy to investigate and characterize multidimensional information regarding the differentiation process of 3 T3-L1 preadipocyte models into white adipocytes and their subsequent browning into beige adipocytes.

View Article and Find Full Text PDF

Understanding the interlayer interaction between 2D layered structures is critical for the construction of various micro- and nanoscale functional devices. However, both the normal and the tangential interlayer interactions between 2D layered materials have rarely been studied simultaneously. In this work, an immersion and lift-up method is proposed to wrap a layer of graphene flakes onto a plasma-pretreated atomic force microscopy (AFM) nanoprobe for the measurements of interaction forces by AFM.

View Article and Find Full Text PDF

The environment surrounding proteins is tightly linked to its dynamics, which can significantly influence the conformation of proteins. This study focused on the effect of pH conditions on the ultrastructure of Immunoglobulin E (IgE) molecules. Herein, the morphology, height, and area of IgE molecules incubated at different pH were imaged by atomic force microscopy (AFM), and the law of IgE changes induced by pH value was explored.

View Article and Find Full Text PDF

People's choice of cosmetics is no longer just 'Follow the trend', but pays more attention to the ingredients of cosmetics, whether the ingredients of cosmetics are beneficial to people's skin health; therefore, more and more skin-healthy ingredients have been discovered and used in cosmetics. In this work, atomic force microscope (AFM) is used to provide physical information about biomolecules and living cells; it brings us a new method of high-precision physical measurement. Centella asiatica (L.

View Article and Find Full Text PDF

Diabetes has become a major public health problem in the world for many years, and it is driving us to probe into its complex mechanism of insulin secretion in pancreatic β cells. The nanoscale resolution characterization of pancreatic β cells in response to glucose led to insights into diverse mechanical and functional processes at the single cell level. Recent advances allowed the direct observations of cytoskeleton dynamics which were quantitatively determined.

View Article and Find Full Text PDF

The phase image of tapping-mode atomic force microscopy (TM-AFM) contains energy dissipation, which is related to the sample information on the physical properties such as the sample Young's modulus, adhesion, surface morphology and subsurface morphology. When TM-AFM is used for sample measurement, the frequency near the first resonance peak of probe is usually selected to drive the probe vibration. When the probe vibration is driven by the frequency, the probe has a high amplitude sensitivity, but the phase sensitivity is relatively low.

View Article and Find Full Text PDF

Hypoxia is a key factor in tumor microenvironments. Tumor-derived exosomes under hypoxia have their functions of communication between local and remote cells, and play an important role in tumor growth and metastasis. However, the effect of tumor-derived exosomes on cell structures and functions under hypoxia is unknown.

View Article and Find Full Text PDF

Micro-nano particle manipulation methods in liquid environments have been widely used in the fields such as medicine, biology and material science. Nevertheless, the methods usually rely on pre-prepared physical microfluidic channels. In this work, virtual electrodes based on the optically induced dielectrophoresis (ODEP) method were used as virtual microchannels instead of traditional physical microfluidic channels.

View Article and Find Full Text PDF

The physical properties of tumor-derived exosomes have gained much attention because they are helpful to better understand the exosomes in biomedicine. In this study, the conductive atomic force microscopy (C-AFM) was employed to perform the electrical characterizations of exosomes, and it obtained the topography and current images of samples simultaneously. The exosomes were absorbed onto the mica substrates coated with a gold film of 20 nm thick for obtaining the current images of samples by C-AFM in air.

View Article and Find Full Text PDF

Trypsin is playing an important role in the processes of cancer proliferation, invasion and metastasis which require the precise information of morphology and mechanical properties on the nano-scale for the related research. In this work, living human hepatoma (SMCC-7721) cells were treated with different concentrations of trypsin solution. The morphology and mechanical properties of the cells were measured via atomic force microscope (AFM).

View Article and Find Full Text PDF

The nanoprobe is a powerful tool in scanning probe microscopy (SPM) that is used to explore various fields of nanoscience. However, the tips can wear out very fast due to the low stability of conventional probes, especially after the measurement of high currents or lateral friction, which results in image distortion and test imprecision. Herein, a novel functional nanoprobe is presented using graphene sheets in a high-quality graphene solution wrapped round a plasma-treated conventional Pt-Ir coated nanoprobe, which shows highly stability and resistance to degradation, leading to a significantly increased lifetime.

View Article and Find Full Text PDF

Conductive atomic force microscopy (C-AFM) is a powerful tool used in the microelectronics analysis by applying a certain bias voltage between the conducting probe and the sample and obtaining the electrical information of sample. In this work, the surface morphological information and current images of the lambda DNA (DNA) molecules with different distributions were obtained by C-AFM. The 1 and 10 nglDNA solutions were dripped onto mica sheets for making randomly distributed DNA and DNA network samples, and another 1 nglDNA sample was placed in a DC electric field with a voltage of 2 V before being dried for stretching the DNA sample.

View Article and Find Full Text PDF

In this work, a rich variety of self-assembled DNA patterns were obtained in the magnetic field. Herein, atomic force microscopy (AFM) was utilized to investigate the effects of the concentration of DNA solution, intensity and direction of magnetic field and modification of mica surface by different cations on the self-assembly of DNA molecules. It was found that owning to the change of the DNA concentration, even under the same magnetic field, the DNA self-assembly results were different.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) is one of the most important tools in the field of biomedical science, and it can be used to perform the high-resolution three-dimensional imaging of samples in liquid environments to obtain their physical properties (such as surface potentials and mechanical properties). The influence of the liquid environment on the image quality of the sample and the detection results cannot be ignored. In this work, quantitative imaging (QI) mode AFM imaging and mechanical detection were performed on mouse brain microvascular endothelial (bEnd.

View Article and Find Full Text PDF

Tumor-derived exosomes (exos) are closely related to the occurrence, development and treatment of tumors. However, it is not clear how the exosomes affect the physical properties, which lead to the deterioration of the target cells. In this paper, atomic force microscopy (AFM) was used to study the effects of exosomes in HCC-LM3 cells and other cells (SMMC-7721 and HL-7702).

View Article and Find Full Text PDF

Renal tubular cell injury by exposure to high glucose (HG) stimulation mainly accounts for diabetic nephropathy (DN). To understand the mechanism of injury by HG, quantitative characterization has commonly focused on the cells that are already impaired, which ignores the signals for the process of being injured. In this study, the architecture and morphology of HK-2 cells were observed dynamically by multiple imaging methods.

View Article and Find Full Text PDF

Direct observation of antigen-antibody binding at the nanoscale has always been a considerable challenging problem, and researchers have made tremendous efforts on it. In this study, the morphology of biotinylated antibody-specific Immunoglobulin E (IgE) immune complexes has been successfully imaged by atomic force microscopy (AFM) in the tapping-mode. The AFM images indicated that the individual immune complex was composed of an IgE and a biotinylated antibody.

View Article and Find Full Text PDF

In an atomic force microscope (AFM) system, the measurement accuracy in the scan images is determined by the displacement accuracy of piezo scanner. The hysteresis model of piezo scanner displacement is complex and difficult to correct, which is the main reason why the output displacement of the piezo scanner does not have high precision. In this study, an image pixel hysteresis model of the piezo scanner displacement in the AFM system was established.

View Article and Find Full Text PDF

Nowadays, nanowire gratings are widely used in various applications such as imaging sensors and high-resolution microscopes. Structure parameters are the main factors that affect the optical performance of the gratings. This work aims to present the influence of the linewidth of pixelated aluminum nanowire gratings with a fixed period on the transmittance and extinction ratio in the visible region.

View Article and Find Full Text PDF

Allergic diseases not only bring serious economic burden to the patients, but also consume a lot of substantial resources of social medical systems. Thus, the prevention and treatment of allergic diseases are imperative. In this study, the anti-degranulation activity of herbal formula was evaluated using the rat basophil leukemia cells (RBL-2H3) as in vitro model.

View Article and Find Full Text PDF

This paper employs a spin-coated method to construct conductive polypyrrole (PPy) substrates which present superior properties for controlling the morphological structures and functions of bEnd.3 cells. The PPy substrates with a homogeneous particle size, uniform distribution and proper roughness show enhanced hydrophilic characteristics and improve cell adhesion to the substrates.

View Article and Find Full Text PDF

Conductive atomic force indentation (CAFI) was proposed to study the self-repair behaviour of the neuronal cell membrane here. CAFI was used to detect the changes of membrane potentials by performing the mechanical indentation on neurons with a conductive atomic force microscope. In the experiment, a special insulation treatment was made on the conductive probe, which turned out to be a conductive nanoelectrode, to implement the CAFI function.

View Article and Find Full Text PDF

Single-cell patterning technology has revealed significant contributions of single cells to conduct basic and applied biological studies such as the understanding of basic cell functions, neuronal network formation, and drug screening. Unlike traditional population-based cell patterning approaches, single-cell patterning is an effective technology of fully understanding cell heterogeneity by precisely controlling the positions of individual cells. Therefore, much attention is currently being paid to this technology, leading to the development of various micro-nanofabrication methodologies that have been applied to locate cells at the single-cell level.

View Article and Find Full Text PDF

Large-scale and morphologically controlled self-assembled λ-DNA networks were successfully constructed by the synergistic effect of a DC electric field. The effect of DNA concentration, direction, and intensity of the electric field, even the modification of the mica surface using Mg on the characteristics of the as-prepared DNA networks, were investigated in detail by atomic force microscopy (AFM). It was found that the horizontal electric field was more advantageous to the formation of DNA networks with more regular structures.

View Article and Find Full Text PDF

The interactions between antibodies and substrates directly affect their conformations and thus their immune functions. Therefore, it is desirable to study the structures of antibodies at the single molecule level. Herein, the substructures of Immunoglobulin E (IgE) on solid surfaces were investigated.

View Article and Find Full Text PDF