Publications by authors named "Zhengxin Yang"

Recent years have seen a surge of machine learning (ML) in chemistry for predicting chemical properties, but a low-cost, general-purpose, and high-performance model, desirable to be accessible on central processing unit (CPU) devices, remains not available. For this purpose, here we introduce an atomic attention mechanism into many-body function corrected neural network (MBNN), namely, MBNN-att ML model, to predict both the extensive and intensive properties of molecules and materials. The MBNN-att uses explicit function descriptors as the inputs for the atom-based feed-forward neural network (NN).

View Article and Find Full Text PDF

Group A rotaviruses (RVAs) are major causes of severe gastroenteritis in infants and young animals. To enhance our understanding of the relationship between human and animals RVAs, complete genome data are necessary. We screened 92 intestinal and stool samples from diarrheic piglets by RT‒PCR targeting the VP6 gene, revealing a prevalence of 10.

View Article and Find Full Text PDF

Textile-reinforced mortar (TRM) composites have been extensively utilized in building reinforcement due to their exceptional mechanical properties. The weakest link in the entire structure is the interface between the TRM composites and the concrete; however, it plays a crucial role in effectively transferring stress. Researchers have taken measures to improve the strength of the interface, but the results are relatively scattered.

View Article and Find Full Text PDF

The magnetic microrobots promise benefits in minimally invasive cell-based therapy. However, they generally suffer from an inevitable compromise between their magnetic responsiveness and biomedical functions. Herein, we report a modularized microrobot consisting of magnetic actuation (MA) and cell scaffold (CS) modules.

View Article and Find Full Text PDF

The high dimensional machine learning potential (MLP) that has developed rapidly in the past decade represents a giant step forward in large-scale atomic simulation for complex systems. The long-range interaction and the poor description of chemical reactions are typical problems of high dimensional MLP, which are mainly caused by the poor structure discrimination of the atom-centered ML model. Herein, we propose a low-cost neural-network-based MLP architecture for fitting global potential energy surface data, namely, G-MBNN, that can offer improved energy and force resolution on a complex potential energy surface.

View Article and Find Full Text PDF

Magnetic continuum robots (MCRs), which are free of complicated structural designs for transmission, can be miniaturized and are therefore widely used in the medical field. However, the deformation shapes of different segments, including deflection directions and curvatures, are difficult to control simultaneously under an external programmable magnetic field. This is because the latest MCRs have designs with an invariable magnetic moment combination or profile of one or more actuating units.

View Article and Find Full Text PDF

Electrical stimulation is a promising method to modulate gastrointestinal disorders. However, conventional stimulators need invasive implantation and removal surgeries associated with risks of infection and secondary injuries. Here, we report a battery-free and deformable electronic esophageal stent for wireless stimulation of the lower esophageal sphincter in a noninvasive fashion.

View Article and Find Full Text PDF

The geometric reconfigurations in three-dimensional morphable structures have a wide range of applications in flexible electronic devices and smart systems with unusual mechanical, acoustic, and thermal properties. However, achieving the highly controllable anisotropic transformation and dynamic regulation of architected materials crossing different scales remains challenging. Herein, we develop a magnetic regulation approach that provides an enabling technology to achieve the controllable transformation of morphable structures and unveil their dynamic modulation mechanism as well as potential applications.

View Article and Find Full Text PDF

Occlusion of the T-tube (tympanostomy tube) is a common postoperative sequela related to bacterial biofilms. Confronting biofilm-related infections of T-tubes, maneuverable and effective treatments are still challenging presently. Here, we propose an endoscopy-assisted treatment procedure based on the wobbling FeO helical micromachine (HMM) with peroxidase-mimicking activity.

View Article and Find Full Text PDF
Article Synopsis
  • * The optimal ratio of Yb to Nd (8:2) and 20 cycles of cyclic voltammetry resulted in reduced hydrogen evolution overpotential (41.5 mV) and charge transfer resistance (15.74 Ω/cm), contributing to increased stability.
  • * The modified electrodes proved effective in treating oil-based drill sludge, achieving up to 85.4% reduction in organic matter and 66.2% removal of petroleum, with a more efficient degradation of aliphatic hydrocarbons compared to aromatic ones.
View Article and Find Full Text PDF

In order to further improve the accuracy of fault identification of rolling bearings, a fault diagnosis method based on the modified particle swarm optimization (MPSO) algorithm optimized least square support vector machine (LSSVM), combining parameter optimization variational mode decomposition (VMD) and multi-scale permutation entropy (MPE), was proposed. Firstly, to solve the problem of insufficient decomposition and mode mixing caused by the improper selection of mode component and penalty factor in VMD algorithm, the whale optimization algorithm (WOA) was used to optimize the penalty factor and mode component number in the VMD algorithm, and the optimal parameter combination (, ) was obtained. Secondly, the optimal parameter combination (, ) was used for the VMD of the rolling bearing vibration signal to obtain several intrinsic mode functions (IMFs).

View Article and Find Full Text PDF

The presence of congenital tremor (CT) type A-II in newborn piglets, caused by atypical porcine pestivirus (APPV), has been a focus since 2016. However, the source, evolutionary history, and transmission pattern of APPV in China remain poorly understood. In this study, we undertook phylogenetic analyses based on available complete E2 gene sequences along with 98 newly sequenced E2 genes between 2016 and 2020 in China within the context of global genetic diversity.

View Article and Find Full Text PDF

Intelligent magnetic soft robots capable of programmable structural changes and multifunctionality modalities depend on material architectures and methods for controlling magnetization profiles. While some efforts have been made, there are still key challenges in achieving programmable magnetization profile and creating heterogeneous architectures. Here, we directly embed programmed magnetization patterns (magnetization modules) into the adhesive sticker layers to construct soft robots with programmable magnetization profiles and geometries and then integrate spatially distributed functional modules.

View Article and Find Full Text PDF

Introduction And Hypothesis: Genome-wide association studies suggest that autophagy plays an important regulatory role in inflammatory and autoimmune diseases. Inflammation and immune regulation disorders are involved in the occurrence and development of interstitial cystitis/bladder pain syndrome (IC/BPS). However, the changes and roles of autophagy in IC/BPS have not been reported.

View Article and Find Full Text PDF

The efficient motility of invertebrates helps them survive under evolutionary pressures. Reconstructing the locomotion of invertebrates and decoupling the influence of individual basic motion are crucial for understanding their underlying mechanisms, which, however, generally remain a challenge due to the complexity of locomotion gaits. Herein, a magnetic soft robot to reproduce midge larva's key natural swimming gaits is developed, and the coupling effect between body curling and rotation on motility is investigated.

View Article and Find Full Text PDF

For the safe working of rolling bearing, this paper presents a fault severity assessment method through optimized multi-dictionaries matching pursuit (OMMP) and Lempel-Ziv (LZ) complexity. To solve the redundancy problem of over-complete dictionary, the OMMP is proposed by introducing the quantum particle swarm optimization into matching pursuit for best representing the original vibration signal. And then, LZ complexity is calculated as an index of fault severity assessment by reconstructed signal.

View Article and Find Full Text PDF

Objective: To study the effect of SiRNA-EGFR on the expression of hyaluronidase gene in human breast cancer cells.

Methods: Reverse transcription-polymerse chain reaction was used to detect the changes in the expression of EGFR mRNA in human breast cancer cell lines MDA-MB-231, MDA-MB-435S, ZR-75 and ZR-75-30 after transfection by SiRNA-EGFR.

Results: After transfection with SiRNA-EGFR, the expression levels of EGFR were significantly inhibited in MDA-MB-231, MDA-MB-435S, ZR-75 and ZR-75-30 cells (P<0.

View Article and Find Full Text PDF

Objective: To investigate the effect of cationic liposome-mediated RNA interference (RNAi) in silencing epidermal growth factor (EGF) receptor (EGFR) gene in breast cancer cells in vivo.

Methods: A small interfering RNA (siRNA) targeting EGFR gene was constructed and transfected into human breast cancer cell in vitro via cationic liposome. The transfected cells were inoculated into nude mice, and the tumor growth inhibition rate was calculated.

View Article and Find Full Text PDF