This paper presents a load-bearing optimization method for customized exoskeleton design based on kinematic gait reconstruction (KGR). For people with acute joint injury, it is no longer probable to obtain the movement gait via computer vision. With this in mind, the 3D reconstruction can be executed from the CT (computed tomography) or MRI (magnetic resonance imaging) of the injured area, in order to generate micro-morphology of the joint occlusion.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
November 2020
This paper proposes a biomechanical performance design method of joint prosthesis for medical rehabilitation via Generative Structure Optimization (GSO). Firstly, the 3D reconstruction of manifold structure involving hard bone and cartilage is sequentially and progressively implemented from heterogeneous medical images such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) via iteration. On the basis of reconstructed mesh structure, the finite element method (FEM) is hereby employed to verify the structure by evaluating the mechanical force distribution.
View Article and Find Full Text PDF