Organophosphate compounds (OPCs) are commonly used as pesticides and were developed as nerve agents for chemical warfare. Exposure to OPCs results in toxicity due to their covalent binding and inhibition of acetylcholinesterase (AChE). Treatment for toxicity due to OPC exposure has been largely focused on the reactivation of AChE by oxime-based compounds via direct nucleophilic attack on the phosphorous center.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) that has been covalently inhibited by organophosphate compounds (OPCs), such as nerve agents and pesticides, has traditionally been reactivated by using nucleophilic oximes. There is, however, a clearly recognized need for new classes of compounds with the ability to reactivate inhibited AChE with improved in vivo efficacy. Here we describe our discovery of new functional groups--Mannich phenols and general bases--that are capable of reactivating OPC--inhibited AChE more efficiently than standard oximes and we describe the cooperative mechanism by which these functionalities are delivered to the active site.
View Article and Find Full Text PDFA series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure-activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2009
Soluble epoxide hydrolase (sEH) is a novel target for the treatment of hypertension and vascular inflammation. A new class of potent non-urea sEH inhibitors was identified via high throughput screening (HTS) and chemical modification. IC(50)s of the most potent compounds range from micromolar to low nanomolar.
View Article and Find Full Text PDFAn IKKbeta inhibitor reported to block NF-kappaB transcriptional activities in Jurkat T cells, was found to enhance NF-kappaB translocation in HUVEC cells. These studies suggested a noncanonical NF-kappaB signaling pathway independent of IKKbeta in HUVEC cells.
View Article and Find Full Text PDFConformationally constrained analogue synthesis was undertaken to aid in pharmacophore mapping and 3D-QSAR analysis of nitrobenzylmercaptopurine riboside (NBMPR) congeners as equilibriative nucleoside transporter 1 (ENT1) inhibitors. In our previous study [J. Med.
View Article and Find Full Text PDFNovel regioisomers of conformationally constrained analogues of the potent es nucleoside transporter ligand, nitrobenzylmercaptopurine riboside (NBMPR), designed for probing its bound (bioactive) conformation, were synthesized and evaluated as es transporter ligands by flow cytometry. Purine 6-position 5, 6, 7, or 8-nitro-1,2,3,4-tetrahydroisoquinolylpurine ribosides, in which the nitrobenzyl moiety in NBMPR has been locked into the nitro-1,2,3,4-tetrahydroisoquinoline system, were synthesized by reaction of the appropriate nitro-1,2,3,4-tetrahydroisoquinoline with 6-chloropurine riboside. Flow cytometry was performed using 5-(SAENTA)-X8-fluorescein as the competitive ligand.
View Article and Find Full Text PDF