Publications by authors named "Zhengxiang Zhou"

Pain is often comorbid with emotional disorders such as anxiety and depression. Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission. This review primarily aims to outline the main circuitry (including the input and output connectivity) of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons; it also describes the neurotransmitters/neuromodulators affecting these neurons, their intercommunication with other neurons, and their importance in mental comorbidities associated with chronic pain disorders.

View Article and Find Full Text PDF

One of the main goals in biogeography and ecology is the study of patterns of species diversity and the driving factors in these patterns. However, such studies have not focused on Sternorrhyncha in China, although this region hosts massive species distribution data. Here, based on the 15,450 distribution records of Sternorrhyncha species in China, we analyzed patterns in species richness and endemism at 1° × 1° grid size and determined the effects of environmental variables on these patterns using correlations analysis and the model averaging approach.

View Article and Find Full Text PDF

Although many hypotheses have been proposed to understand the mechanisms underlying large-scale richness patterns, the environmental determinants are still poorly understood, particularly in insects. Here, we tested the relative contributions of seven hypotheses previously proposed to explain planthopper richness patterns in China. The richness patterns were visualized at a 1° × 1° grid size, using 14,722 distribution records for 1335 planthoppers.

View Article and Find Full Text PDF

The delphacid planthoppers genus Ding & Chen, 2001 is reviewed. Two new species, and , are described and illustrated from China to give the genus three species in total, and the generic characteristics are redefined. A short description and illustrations are also given for .

View Article and Find Full Text PDF

A new planthopper genus (Delphacidae: Delphacinae: Delphacini) was described and illustrated with two new species and from south China. A key to species of the new genus is also given.

View Article and Find Full Text PDF

Transcriptional coactivator with PDZ-binding motif (TAZ) is a key transcriptional mediator of Hippo signaling that has been recently reported to mediate Wnt-activated transcription and serve as a component to suppress canonical Wnt/β-catenin activity. The Bromodomain and Extra-terminal domain (BET) family of proteins can recognize the acetylated lysine chain on histones and plays a critical role in transcriptional regulation. However, the mechanisms underlying transcriptional repression by the BET bromodomain are poorly understood.

View Article and Find Full Text PDF

Chrysotus weii Zhou, nom. n., the new replacement name is proposed for the species Chrysotus infirmus Wei, Zhang & Zhou, 2014 (Diptera: Brachycera: Dolichopodidae: Diaphorinae), which was preoccupied by Chrysotus infirmus Parent, 1933.

View Article and Find Full Text PDF

Objective: To explore the effect of ROCK inhibitor Y-27632 on the matrix metalloproteinase 2 and 9 (MMP2 and MMP9) gene expression and activity in tumor necrosis factor α (TNF-α)-treated human umbilical vein endothelial cell (HUVEC).


Methods: HHUVEC was divided into 3 groups, a control group, a TNF-α group, and a TNF-α plus Y-27632 group. The expressions of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), MMP2 and MMP9 were examined by real-time PCR.

View Article and Find Full Text PDF

Wnt signaling plays essential role in mesenchymal stem cell (MSC) differentiation. Activation of Wnt signaling suppresses adipogenesis, but promotes osteogenesis in MSC. Adenomatous polyposis coli (APC) is a negative regulator of β-catenin and Wnt signaling activity.

View Article and Find Full Text PDF

Inflammatory response is essential to host defense and repair, and requires tight regulation as excessive and constant inflammatory response is deleterious. We recently identified that one of the general but key mechanisms for inflammatory gene transcription regulation is controlled by the formation of super enhancers mediated by NF-κB, and bromodomain and extraterminal (BET) proteins. Given that microRNA transcription shares a similar mechanism to mRNA, we assume that the inflammatory microRNAs transcription could be NF-κB and BET bromodomain dependent.

View Article and Find Full Text PDF