Biosci Microbiota Food Health
July 2024
In order to optimize the balance between strength and toughness, a series of multilayered Ti-based bulk metallic glass composites (BMGCs) with varying thicknesses of Ti-rich layers were successfully fabricated. The findings reveal that with an increase in the thickness of the Ti-rich layers, both the flexural yield strength and ultimate strength decreased from 2066 MPa and 2717 MPa to 668 MPa and 1163 MPa, respectively. Conversely, there was a noticeable increase in flexural strain.
View Article and Find Full Text PDFSurface activation is considered to regulate the electronic structures of materials for enhancing catalytic capability. Herein, we report a controllable strategy for constructing three-dimensional micro-nanoporous copper catalysts with high reactivity and activity for the degradation reaction of organic pollutants. Various micro-nanoporous structures and formation processes by chemical selective dealloying of Cu-based metallic glasses are evaluated due to the surface modification.
View Article and Find Full Text PDFMetallic glasses have received a lot of attention on wastewater treatment due to their unique atomic structure, and the use of metallic glasses as electrodes has produced unexpected electrocatalytic degradation effects for many pollutants through combining with electrochemical technology. However, it still is a formidable challenge to find a metallic glass electrode material with both efficient and clean for the catalytic degradation of pollutants. In this work, the CuZr metallic glassy ribbons are used as an electrode to degrade azo dyes and show the excellent degradation effect, which can reach 95.
View Article and Find Full Text PDFIn order to adapt to the launch velocity of modern artillery, it is necessary to study the fracture mechanism of the high-velocity penetration of penetrators. Therefore, the penetration fracture mode of tungsten-fiber-reinforced Zr-based bulk metallic glass matrix composite (WF/Zr-MG) rods at a high velocity is studied. An experiment on WF/Zr-MG rods penetrating into rolled homogeneous armor steel (RHA) was carried out at 1470~1650 m/s.
View Article and Find Full Text PDFThis study aims to explore the medication rule of traditional Chinese medicine(TCM) for heart failure after myocardial infarction via data mining. To be specific, articles on the treatment of the disease with Chinese medicine were retrieved from CNKI, Wanfang, VIP, and SinoMed and related information was collected. A database was created with Microsoft Excel 2019, and SPSS Clementine 12.
View Article and Find Full Text PDFCrystalline-amorphous composite have the potential to achieve high strength and high ductility through manipulation of their microstructures. Here, we fabricate a TiZr-based alloy with micrometer-size equiaxed grains that are made up of three-dimensional bicontinuous crystalline-amorphous nanoarchitectures (3D-BCANs). In situ tension and compression tests reveal that the BCANs exhibit enhanced ductility and strain hardening capability compared to both amorphous and crystalline phases, which impart ultra-high yield strength (~1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
Metallic glasses (MGs) with the unique long-range disordered and short-range ordered atomic structure have attracted extensive attention in the field of environmental catalysis due to their advanced catalytic capability. Herein, CuZr-based MGs are first proven to exhibit superior catalytic performance toward the degradation of organic pollutants compared to the annealed ribbons with different crystal structures; many Cu nanocomposites are gradually in situ precipitated on the surface of the ribbons. The enhanced catalytic behavior is mainly attributed to the random atomic packing structure accelerating electron transport and providing sufficient active sites.
View Article and Find Full Text PDFChinese patent medicine prescriptions containing Jujubea Fructus in 2015 edition of Chinese Pharmacopoeia and the Composition Principles of Chinese Patent Drug were collected, and the characteristics of Chinese patent medicine containing Jujubea Fructus were analyzed by using data mining technology. Statistical software Excel 2019, Clementine 12.0 and SPSS 21.
View Article and Find Full Text PDFFlexible magnetoelectric (ME) nanocomposites with a strong coupling between ferromagnetism and ferroelectricity are of significant importance from the point of view of next-generation flexible electronic devices. However, a high loading of magnetic nanomaterials is needed to achieve preferable ME response due to the size mismatch of the magnetostrictive phase and piezoelectric phase. In this work, ultra-small CoFe2O4 nanoparticles were prepared to match the size of the polar crystal in poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), and 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS) is introduced to enhance the interplay between P(VDF-TrFE) and CoFe2O4.
View Article and Find Full Text PDFThe strain rate effect on the mechanical behavior of amorphous alloys has aroused general interest. Most studies in this area have focused on quasi-static and high strain-rate compressive deformations. However, experimental results have been few, or even non-existent, under a moderate strain-rate loading.
View Article and Find Full Text PDFAims: Explore the effects of dodder total flavone on polycystic ovary syndrome (PCOS) rat models induced by dehydroepiandrosterone (DHEA) combined human chorionic gonadotropin (HCG).
Methods: Except the blank group, the rest of the rats were injected with DHEA 6 mg/100 g on the back of the neck and 1.5 IU HCG each day, for 21 consecutive days.
Martensitic transformations originate from a rigidity instability, which causes a crystal to change its lattice in a displacive manner. Here, we report that the martensitic transformation on cooling in Ti-Zr-Cu-Fe alloys yields an amorphous phase instead. Metastable β-Ti partially transforms into an intragranular amorphous phase due to local lattice shear and distortion.
View Article and Find Full Text PDFA novel Si/Sn composite anode material with unique ribbon structure was synthesized by Mechanical Milling (MM) and the structural transformation was studied in the present work. The microstructure characterization shows that Si/Sn composite with idealized entangled ribbon structured can be obtained by milling the mixture of the starting materials, Si and Sn for 20 h. According to the calculated results based on the XRD data, the as-milled 20 h sample has the smallest avergae crystalline size.
View Article and Find Full Text PDFJ Environ Sci (China)
June 2013
Some problems including low treatment capacity, agglomeration and clogging phenomena, and short working life, limit the application of pre-treatment methods involving zero-valent iron (ZVI). In this article, ZVI was frozen in an amorphous state through a melt-spinning technique, and the decolorization effect of amorphous ZVI on Acid Orange II solution was investigated under varied conditions of experimental variables such as reaction temperature, ribbon dosage, and initial pH. Batch experiments suggested that the decolorization rate was enhanced with the increase of reaction temperature and ribbon dosage, but decreased with increasing initial solution pH.
View Article and Find Full Text PDF