Proteins are the foundation of life, and designing functional proteins remains a key challenge in biotechnology. Before the development of AlphaFold2, the focus of design was primarily on structure-centric approaches such as using the well-known open-source software Rosetta3. Following the development of AlphaFold2, deep-learning techniques for protein design gained prominence.
View Article and Find Full Text PDFComput Biol Chem
August 2024
Cell-penetrating peptides have attracted much attention for their ability to break through cell membrane barriers, which can improve drug bioavailability, reduce side effects, and promote the development of gene therapy. Traditional wet-lab prediction methods are time-consuming and costly, and computational methods provide a short-time and low-cost alternative. Still, the accuracy and reliability need to be further improved.
View Article and Find Full Text PDFAs a non-destructive sensing technique, Raman spectroscopy is often combined with regression models for real-time detection of key components in microbial cultivation processes. However, achieving accurate model predictions often requires a large amount of offline measurement data for training, which is both time-consuming and labor-intensive. In order to overcome the limitations of traditional models that rely on large datasets and complex spectral preprocessing, in addition to the difficulty of training models with limited samples, we have explored a genetic algorithm-based semi-supervised convolutional neural network (GA-SCNN).
View Article and Find Full Text PDF