Cadmium (Cd) is a ubiquitous toxic heavy metal and a potential neurotoxicant due to its wide use in industrial manufacturing processes and commercial products, including fertilizers. The general population is exposed to Cd through food and smoking due to high transfer rates of Cd from contaminated soil. Cd has been shown to mimic calcium ions (Ca2+) and interfere with intracellular Ca2+ levels and Ca2+ signaling in in vitro studies.
View Article and Find Full Text PDFThe apolipoprotein E (ApoE) gene is a genetic risk factor for late-onset Alzheimer's disease, in which ε4 allele carriers have increased risk compared to the common ε3 carriers. Cadmium (Cd) is a toxic heavy metal and a potential neurotoxicant. We previously reported a gene-environment interaction (GxE) effect between ApoE4 and Cd that accelerates or increases the severity of the cognitive decline in ApoE4-knockin (ApoE4-KI) mice exposed to 0.
View Article and Find Full Text PDFCadmium (Cd) exposure is associated with increased Alzheimer's disease (AD) risks. The human Apolipoprotein E () gene encodes a lipid-transporting protein that is critical for brain functions. Compared with and , is associated with increased AD risk.
View Article and Find Full Text PDFThe human Apolipoprotein E4 (ApoE4) variant is the strongest known genetic risk factor for Alzheimer's disease (AD). Cadmium (Cd) has been shown to impair learning and memory at a greater extent in humanized ApoE4 knock-in (ApoE4-KI) mice as compared to ApoE3 (common allele)-KI mice. Here, we determined how cadmium interacts with ApoE4 gene variants to modify the gut-liver axis.
View Article and Find Full Text PDFCadmium (Cd) is a toxic heavy metal and a significant public health concern. Epidemiological studies suggest that Cd is a potential neurotoxicant, and its exposure is associated with cognitive deficits in children, adults, and seniors. Our previous study has found that adulthood-only Cd exposure can impair cognition in mice.
View Article and Find Full Text PDFCadmium (Cd) is a heavy metal that is one of the most toxic environmental pollutants throughout the world. We previously reported that Cd exposure impairs olfactory memory in mice. However, the underlying mechanisms for its neurotoxicity for olfactory function are not well understood.
View Article and Find Full Text PDFCadmium (Cd) is a heavy metal and an environmental pollutant. However, the full spectrum of its neurotoxicity and the underlying mechanisms are not completely understood. Our previous studies demonstrated that Cd exposure impairs adult hippocampal neurogenesis and hippocampus-dependent memory in mice.
View Article and Find Full Text PDFCadmium (Cd) is a heavy metal of great public health concern. Recent studies suggested a link between Cd exposure and cognitive decline in humans. The ε4 allele, compared with the common ε3 allele, of the human apolipoprotein E gene (ApoE) is associated with accelerated cognitive decline and increased risks for Alzheimer's disease (AD).
View Article and Find Full Text PDFCadmium (Cd) is an environmental pollutant of considerable interest throughout the world and potentially a neurotoxicant. Our recent data indicate that Cd exposure induces impairment of hippocampus-dependent learning and memory in mice. However, the underlying mechanisms for this defect are not known.
View Article and Find Full Text PDFAlthough the biochemical signaling events in area CA1 of the hippocampus underlying memory acquisition, consolidation, retrieval, and extinction have been extensively studied, little is known about the activity dynamics of hippocampal neurons in CA1 during Pavlovian fear conditioning. Here, we use fiber-optic confocal microscopy coupled with the calcium indicator GCaMP6m to monitor neuron activity in freely moving mice during trace fear conditioning. We show that the activity of a group of CA1 neurons increases not only after the stimulus presentations, but also during the stimulus-free trace period when the conditioned mice exhibit a high level of freezing behavior.
View Article and Find Full Text PDFOwing to the prevalence of tumor-associated macrophages (TAMs) in cancer and their unique influence upon disease progression and malignancy, macrophage-targeted interventions have attracted notable attention in cancer immunotherapy. However, tractable targets to reduce TAM activities remain very few and far between because the signaling mechanisms underpinning protumor macrophage phenotypes are largely unknown. Here, we have investigated the role of the extracellular-regulated protein kinase 5 (ERK5) as a determinant of macrophage polarity.
View Article and Find Full Text PDFCadmium (Cd) is a heavy metal of high interest to the superfund initiative. Recent epidemiology studies have suggested a possible association between Cd exposure and cognitive as well as olfactory impairments in humans. However, studies in animal models are needed to establish a direct causal relationship between Cd exposure and impairments in cognition and olfaction.
View Article and Find Full Text PDFLead is a neurotoxicant of immense public health importance. Epidemiology studies suggest that heavy metal exposure may be associated with an increased risk of cognitive decline, yet few studies to date have assessed the effect of adult lead exposure on cognitive behavior in animal models. Here, we exposed 6-week-old male C57BL/6 mice to 0.
View Article and Find Full Text PDFAlthough sleep is strongly implicated in memory consolidation, the molecular basis for the role of sleep in memory is not known. It has been established that the consolidation of hippocampus-dependent memory depends on the activation of the Erk1,2 MAP kinase (MAPK) pathway which activates de novo CRE-mediated transcription and translation, two processes required for memory consolidation pathway. The activation of MAPK during memory formation and its nuclear translocation both depend upon cAMP signals generated by the calmodulin-stimulated adenylyl cyclases, type 1 and type 8 (AC1 and AC8).
View Article and Find Full Text PDFReduction of mitochondrial complex I activity is one of the major hypotheses for dopaminergic neuron death in Parkinson's disease. However, reduction of complex I activity in all cells or selectively in dopaminergic neurons via conditional deletion of the Ndufs4 gene, a subunit of the mitochondrial complex I, does not cause dopaminergic neuron death or motor impairment. Here, we investigated the effect of reduced complex I activity on non-motor symptoms associated with Parkinson's disease using conditional knockout (cKO) mice in which Ndufs4 was selectively deleted in dopaminergic neurons (Ndufs4 cKO).
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is characterized by progressive cognitive decline and memory loss. Environmental factors and gene-environment interactions (GXE) may increase AD risk, accelerate cognitive decline, and impair learning and memory. However, there is currently little direct evidence supporting this hypothesis.
View Article and Find Full Text PDFCadmium (Cd) is a heavy metal with a long biological half-life in humans and is recognized as a toxic pollutant. Cd is also a potential neurotoxicant and its exposure is associated with olfactory impairment in humans. However, the molecular and cellular mechanisms of Cd neurotoxicity are not well defined.
View Article and Find Full Text PDFAlthough there is evidence that adult neurogenesis contributes to the therapeutic efficacy of chronic antidepressant treatment for anxiety and depression disorders, the role of adult neurogenesis in the onset of depression-related symptoms is still open to question. To address this issue, we utilized a transgenic mouse strain in which adult neurogenesis was specifically and conditionally impaired by Nestin-CreER-driven, inducible knockout (icKO) of erk5 MAP kinase in Nestin-expressing neural progenitors of the adult mouse brain upon tamoxifen administration. Here, we report that inhibition of adult neurogenesis by this mechanism is not associated with an increase of the baseline anxiety or depression in non-stressed animals, nor does it increase the animal's susceptibility to depression after chronic unpredictable stress treatment.
View Article and Find Full Text PDFInhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo.
View Article and Find Full Text PDFRecent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined.
View Article and Find Full Text PDFAdult hippocampal neurogenesis is the process whereby adult neural precursor cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate adult-born, functional neurons in the hippocampus. This process is modulated by various extracellular and intracellular stimuli, and the adult-born neurons have been implicated in hippocampus-dependent learning and memory. However, studies on how neurotoxic agents affect this process and the underlying mechanisms are limited.
View Article and Find Full Text PDFThe type 3 adenylyl cyclase (AC3) is localized to olfactory cilia in the main olfactory epithelium (MOE) and primary cilia in the adult mouse brain. Although AC3 has been strongly implicated in odor perception and olfactory sensory neuron (OSN) targeting, its role in granule cells (GCs), the most abundant interneurons in the main olfactory bulb (MOB), remains largely unknown. Here, we report that the deletion of AC3 leads to a significant reduction in the size of the MOB as well as the level of adult neurogenesis.
View Article and Find Full Text PDFMitochondrial complex I (NADH dehydrogenase) is a major contributor to neuronal energetics, and mutations in complex I lead to vision loss. Functional, neuroanatomical and transcriptional consequences of complex I deficiency were investigated in retinas of the Ndufs4 knockout mouse. Whole-eye ERGs and multielectrode arrays confirmed a major retinal ganglion cell functional loss at P32, and retinal ganglion cell loss at P42.
View Article and Find Full Text PDFMice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice, including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors, especially learning and memory, emotionality and affect, and sociality.
View Article and Find Full Text PDF