Publications by authors named "Zhengtian Xie"

3D printing as a powerful technology enables the fabrication of organ structures with a programmed geometry, but it is usually difficult to produce large-size tissues due to the limited working space of the 3D printer and the instability of bath or ink materials during long printing sessions. Moreover, most printing only allows preparation with a single ink, while a real organ generally consists of multiple materials. Inspired by the 3D puzzle toy, we developed a "building block-based printing" strategy, through which the preparation of 3D tissues can be realized by assembling 3D-printed "small and simple" bio-blocks into "large and complex" bioproducts.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a type of capillary network characterized by a highly selective barrier, which restricts the transport of substances between the blood and nervous system. Numerous models of the BBB have been developed for drug testing, but a BBB model with controllable capillary structures remains a major challenge. In this study, we report for the first time a unique method of controlling the blood capillary networks and characteristic holes formation in a BBB model by varying the elastic modulus of a three-dimensional scaffold.

View Article and Find Full Text PDF

3D printing in a microgel-based supporting bath enables the construction of complex structures with soft and watery biomaterials but the low print resolution is usually an obstacle to its practical application in tissue engineering. Herein, high-resolution printing of a 3D collagen organ scaffold is realized by using an engineered Gellan gum (GG) microgel bath containing trisodium citrate (TSC). The introduction of TSC into the bath system not only mitigates the aggregation of GG microgels, leading to a more homogeneous bath morphology but also suppresses the diffusion of the collagen ink in the bath due to the dehydration effect of TSC, both of which contribute to the improvement of print resolution.

View Article and Find Full Text PDF

Embedded extrusion printing facilitates the fabrication of complex biological structures using soft hydrogels that are challenging to construct using conventional manufacturing methods. While this targeting strategy is appealing, the residues of support materials on the printed objects have been overlooked. Here, we quantitatively compare the bath residues on fibrin gel fibers printed in granular gel baths that are conjugated with fluorescent probes for visualization, including physically crosslinked gellan gum (GG) and gelatin (GEL) baths and chemically crosslinked polyvinyl alcohol baths.

View Article and Find Full Text PDF

Exploring novel healing mechanisms is a constant impetus for the development of self-healing materials. Herein, we find that side-chain interlocking of bottlebrush polymers can form a dynamic network and thereby serve as a driving force for the self-healing process of the materials. Molecular dynamics simulation indicates that the interlocking is formed by the interpenetration between the long side chains of adjacent molecules and stabilized by van der Waals interactions and molecular entanglements of side chains.

View Article and Find Full Text PDF

Embedded extrusion printing provides a versatile platform for fabricating complex hydrogel-based biological structures with living cells. However, the time-consuming process and rigorous storage conditions of current support baths hinder their commercial application. This work reports a novel "out-of-the-box" granular support bath based on chemically crosslinked cationic polyvinyl alcohol (PVA) microgels, which is ready to use by simply dispersing the lyophilized bath in water.

View Article and Find Full Text PDF

Three-dimensional (3D) bioprinting has rapidly developed in the last decade, playing an increasingly important role in applications including pharmacokinetics research, tissue engineering, and organ regeneration. As a cutting-edge technology in 3D printing, gel bath-supported 3D bioprinting enables the freeform construction of complex structures with soft and water-containing materials, facilitating the fabrication of live tissue or organ models. To realize -like organs or tissues in terms of biological functions and complex structures by 3D printing, high resolution and fidelity are prerequisites.

View Article and Find Full Text PDF

Developing high value-added products from the waste materials is highly promising from the perspective of environmental protection and resource recovery. Herein, the used cigarette filter was recycled to prepare the flow reactor via a clean and facile strategy. A continuous-flow reduction method was adopted to produce the gold nanoparticles on deacetylated cigarette filter without any extra chemical modifier, reductant or surfactant.

View Article and Find Full Text PDF

Monolithic flow reactors are widely applied in numerous reactions due to its high efficiency and good reusability, but the green and efficient fabrication of monolithic flow catalytic system is still a challenge. Herein, the cellulose monolith prepared using a facile temperature-induced phase separation method was utilized to generate and immobilize the gold nanoparticles by a continuous-flow strategy, in which the cellulose monolith served as both reducing agent and supporting material. This process was conducted at room temperature and avoided the tedious surface modification of cellulose.

View Article and Find Full Text PDF

A highly effective, stable and reusable flow microreactor was developed by utilizing the environmentally sustainable porous monolithic cellulose based on a facile temperature induced phase separation (TIPS) method. The obtained microreator could be applied to efficiently and continuously catalysing the reduction reaction of 4-nitrophenol (an important reaction in water treatment) without any post-treatment or regeneration of catalysts. Moreover, the monolith overcame the brittleness of the crystalline cellulose and showed a good mechanical resilience, suggesting a great potential for the practical application in severe environment.

View Article and Find Full Text PDF

In this paper, graphene oxide (GO) and carbon nanotube (CNT) hybrid fillers were used to replace partial carbon black (CB), and GO/CNT/CB/NR composites were prepared with excellent crack growth resistance, low heat build-up and superior mechanical properties. Mechanical testing revealed a significant synergistic reinforcement between GO/CNT and CB in NR composites. The improved dispersion of GO/CNT hybrid fillers and CB in the NR matrix was characterized by transmission electron microscopy (TEM).

View Article and Find Full Text PDF