Publications by authors named "Zhengshuai Liu"

Chronic adipose tissue inflammation accompanied by macrophage accumulation and activation is implicated in the pathogenesis of insulin resistance and type 2 diabetes in humans. The transcriptional coregulator CREBZF is a key factor in hepatic metabolism, yet its role in modulating adipose tissue inflammation and type 2 diabetes remains elusive. The present study demonstrates that overnutrition-induced CREBZF links adipose tissue macrophage (ATM) proinflammatory activation to insulin resistance.

View Article and Find Full Text PDF

Although mutations are not commonly found in small cell lung cancer (SCLC), a substantial fraction of SCLC shows clinically relevant response to PARP inhibitors (PARPis). However, the underlying mechanism(s) of PARPi sensitivity in SCLC is poorly understood. We performed quantitative proteomic analyses and identified proteomic changes that signify PARPi responses in SCLC cells.

View Article and Find Full Text PDF

Recent studies have pointed to PARP1 trapping as a key determinant of the anticancer effects of PARP1 inhibitors (PARPi). We identified RNF114, as a PARylation-dependent, E3 ubiquitin ligase involved in DNA damage response. Upon sensing genotoxicity, RNF114 was recruited, in a PAR-dependent manner, to DNA lesions, where it targeted PARP1 for degradation.

View Article and Find Full Text PDF
Article Synopsis
  • Prolyl hydroxylase domain (PHD3) enzymes are influenced by fasting and help regulate gluconeogenesis (the production of glucose) in the liver by modifying CRTC2, a key protein involved in this process.* ! -
  • The activation of PHD3 leads to hydroxylation of specific proline residues on CRTC2, which is essential for its interaction with CREB (a transcription factor) and the promotion of gluconeogenic gene expression.* ! -
  • Mice lacking PHD3 or having a mutant form show lower levels of glucose production during fasting, indicating the importance of PHD3 in metabolic regulation, and this mechanism may provide new treatment strategies for diabetes and related conditions
View Article and Find Full Text PDF

The research on the time-frequency characteristics and evolution law of acoustic emission (AE) signals during deformed coal failure is more conducive to understand the damage mechanism of coal. In this study, the experiments of AE monitoring during the intact and deformed coal failure were first conducted under loading axial stress and unloading confining stress conditions. Based on the evolution characteristics of volume strain and AE event rate, the damage process of coal was divided into three stages: nonfracture development stage, stable development stage of fracture, and unstable development stage of fracture.

View Article and Find Full Text PDF

Background And Aims: NASH has emerged as a leading cause of chronic liver disease. However, the mechanisms that govern NASH fibrosis remain largely unknown. CREBZF is a CREB/ATF bZIP transcription factor that causes hepatic steatosis and metabolic defects in obesity.

View Article and Find Full Text PDF

Interlaminar corrosion (ILC) poses a severe threat to stratified conductors which are broadly employed in engineering fields including aerospace, energy, etc. Therefore, for the pressing concern regarding the safety and integrity of stratified conductors, it is imperative to non-intrusively and quantitatively interrogate ILC via non-destructive evaluation techniques. In this paper, pulse-modulation eddy current (PMEC) for imaging and assessment of ILC is intensively investigated through theoretical simulations and experiments.

View Article and Find Full Text PDF

Background And Aims: Butyric acid is an intestinal microbiota-produced short-chain fatty acid, which exerts salutary effects on alleviating nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanism of butyrate on regulating hepatic lipid metabolism is largely unexplored.

Methods: A mouse model of NAFLD was induced with high-fat diet feeding, and sodium butyrate (NaB) intervention was initiated at the eighth week and lasted for 8 weeks.

View Article and Find Full Text PDF

Background And Aims: Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin-binding sites (FGF1 ) against NAFLD.

Approach And Results: FGF1 administration was effective in 9-month-old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased.

View Article and Find Full Text PDF

Background: Nonalcoholic fatty liver disease (NAFLD) is associated with altered production of secreted proteins. Increased understanding of secreted proteins could lead to improved prediction and treatment of NAFLD. Here, we aimed to discover novel secreted proteins in humans that are associated with hepatic fat content using unbiased proteomic profiling strategy, and how the identified Thbs1 modulates lipid metabolism and hepatic steatosis.

View Article and Find Full Text PDF

Nonalcoholic steatohepatitis has emerged as a major cause of liver diseases with no effective therapies. Here, we evaluate the efficacies and pharmacokinetics of B1344, a long-acting polyethylene glycolylated (PEGylated) fibroblast growth factor 21 analog, in a nongenetically modified nonhuman primate species that underwent liver biopsy and demonstrate the potential for efficacies in humans. B1344 is sufficient to selectively activate signaling from the βKlotho/FGFR1c receptor complex.

View Article and Find Full Text PDF

The cladded conductor is broadly utilized in engineering fields, such as aerospace, energy, and petrochemical; however, it is vulnerable to thickness loss occurring in the clad layer and nonconductive protection coating due to abrasive and corrosive environments. Such a flaw severely undermines the integrity and safety of the mechanical structures. Therefore, evaluating the thickness loss hidden inside cladded conductors via reliable nondestructive evaluation techniques is imperative.

View Article and Find Full Text PDF

Microbial metabolites have emerged as critical components that mediate the metabolic effects of the gut microbiota. Here, we show that indole-3-propionic acid (IPA), a tryptophan metabolite produced by gut bacteria, is a potent anti-non-alcoholic steatohepatitis (NASH) microbial metabolite. Here, we demonstrate that administration of IPA modulates the microbiota composition in the gut and inhibits microbial dysbiosis in rats fed a high-fat diet.

View Article and Find Full Text PDF

Background And Aims: STAT3, a member of the signal transducer and activator of transcription (STAT) family, is strongly associated with liver injury, inflammation, regeneration, and hepatocellular carcinoma development. However, the signals that regulate STAT3 activity are not completely understood.

Approach And Results: Here we characterize CREB/ATF bZIP transcription factor CREBZF as a critical regulator of STAT3 in the hepatocyte to repress liver regeneration.

View Article and Find Full Text PDF

Insulin-induced gene (Insig) negatively regulates SREBP-mediated de novo fatty acid synthesis in the liver. However, the upstream regulation of Insig is incompletely understood. Here we report that AMPK interacts with and mediates phosphorylation of Insig.

View Article and Find Full Text PDF

Although emerging evidence indicates an important role of the circadian clock in modulating the diurnal oscillation of mammalian target of rapamycin complex 1 (mTORC1) signaling, the underlying molecular mechanism remains elusive. Here we show that Period2 (Per2), a core clock protein, functions as a scaffold protein to tether tuberous sclerosis complex 1 (Tsc1), Raptor, and mTOR together to specifically suppress the activity of mTORC1 complex. Due to the loss of its inhibition of mTORC1, Per2 deficiency significantly enhances protein synthesis and cell proliferation but reduces autophagy.

View Article and Find Full Text PDF

Autophagy is of key importance for eliminating aggregated proteins during the maintenance of cellular proteostasis in response to endoplasmic reticulum (ER) stress. However, the upstream signaling that mediates autophagy activation in response to ER stress is incompletely understood. In this study, and approaches were utilized that include gain- and loss-of-function assays and mouse livers and human cell lines with tunicamycin-induced pharmacological ER stress.

View Article and Find Full Text PDF

Background And Purpose: Berberine, a compound from rhizome coptidis, is traditionally used to treat gastrointestinal infections, such as bacterial diarrhoea. Recently, berberine was shown to have hypoglycaemic and hypolipidaemic effects. We investigated the mechanisms by which berberine regulates hepatic lipid metabolism and energy expenditure in mice.

View Article and Find Full Text PDF

The endoplasmic reticulum quality control protein activating transcription factor 6 (ATF6) has emerged as a novel metabolic regulator. Here, we show that adenovirus-mediated overexpression of the dominant-negative form of ATF6 (dnATF6) increases susceptibility to develop hepatic steatosis in diet-induced insulin-resistant mice and fasted mice. Overexpression of dnATF6 or small interfering RNA-mediated knockdown of ATF6 decreases the transcriptional activity of peroxisome proliferator-activated receptor α (PPARα)/retinoid X receptor complex, and inhibits oxygen consumption rates in hepatocytes, possibly through inhibition of the binding of PPARα to the promoter of its target gene.

View Article and Find Full Text PDF