Micromachines (Basel)
December 2023
Sparse-view reconstruction has garnered significant interest in X-ray computed tomography (CT) imaging owing to its ability to lower radiation doses and enhance detection efficiency. Among current methods for sparse-view CT reconstruction, an algorithm utilizing iterative reconstruction based on full variational regularization demonstrates good performance. The optimized direction and number of computations for the gradient operator of the regularization term play a crucial role in determining not only the reconstructed image quality but also the convergence speed of the iteration process.
View Article and Find Full Text PDFThe efficiency of all-perovskite tandem devices falls far below theoretical efficiency limits, mainly because a widening bandgap fails to increase open-circuit voltage. We report on a bifacial all-perovskite tandem structures with an equivalent efficiency of 29.3% under back-to-front irradiance ratio of 30.
View Article and Find Full Text PDFWe report the profiling of spatial and energetic distributions of trap states in metal halide perovskite single-crystalline and polycrystalline solar cells. The trap densities in single crystals varied by five orders of magnitude, with a lowest value of 2 × 10 per cubic centimeter and most of the deep traps located at crystal surfaces. The charge trap densities of all depths of the interfaces of the polycrystalline films were one to two orders of magnitude greater than that of the film interior, and the trap density at the film interior was still two to three orders of magnitude greater than that in high-quality single crystals.
View Article and Find Full Text PDFWide-band gap metal halide perovskites are promising semiconductors to pair with silicon in tandem solar cells to pursue the goal of achieving power conversion efficiency (PCE) greater than 30% at low cost. However, wide-band gap perovskite solar cells have been fundamentally limited by photoinduced phase segregation and low open-circuit voltage. We report efficient 1.
View Article and Find Full Text PDFWide-bandgap perovskites are attractive top-cell materials for tandem photovoltaic applications. Comprehensive optical modeling is essential to minimize the optical losses of state-of-the-art perovskite/perovskite, perovskite/CIGS, and perovskite/silicon tandems. Such models require accurate optical constants of wide-bandgap perovskites.
View Article and Find Full Text PDF