Microplastics (MPs) pollution has been increasingly investigated in marine and freshwater environments, even in atmosphere in China. Current literatures show that MPs contamination is highly related to human activities and geomorphology. Higher MPs occurrences were detected in freshwaters than those in seawaters in China.
View Article and Find Full Text PDFNitrogen molecules are promoted to excited neutral states during femtosecond laser pulse filamentary propagation in atmosphere, leading to a characteristic UV fluorescence. Using a laser-induced fluorescence depletion technique, we measure the formation dynamics of these excited neutral nitrogen molecules with femtosecond time resolution. We find that the excited neutral molecules are formed in an unexpected ultrafast timescale of ∼4 ps at 1 bar and ∼120 ps at 30 mbar pressure.
View Article and Find Full Text PDFMicroplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of aged MPs with other pollutants and their toxic effects to microalgae. Therefore, the present study aimed to investigate i) the aging of microplastics polyvinyl chloride (mPVC) in simulated seawater and the changes in physical and chemical properties; ii) the effects of single mPVC (virgin and aged) and copper on microalgae Chlorella vulgaris; and iii) the interaction of aged mPVC and copper and the oxidative stress towards C.
View Article and Find Full Text PDFSingly ionized nitrogen molecules in ambient air pumped by 800 nm femtosecond laser give rise to superradiant emission. Here, we study this superradiance by injecting a pair of resonant seeding pulses at different intensity ratios inside the nitrogen gas plasma. Strong modulation of the 391.
View Article and Find Full Text PDFNitrogen molecules in ambient air exposed to an intense near-infrared femtosecond laser pulse give rise to cavity-free superradiant emission at 391.4 and 427.8 nm.
View Article and Find Full Text PDF