Int J Environ Res Public Health
October 2019
(1) Background: The devastating Ms 7.1 earthquake struck Yushu city, China, in 2010, leading to serious consequences and damage in the central Tibetan Plateau. This study aimed to assess school adaptation and post-traumatic stress disorder (PTSD) symptoms of adolescent survivors five years after the Yushu earthquake.
View Article and Find Full Text PDFMorphology engineering is a decisive factor for the optoelectronic properties of nanocrystals. Differing from morphologies with a solid interior, ring-like structures have a unique internal space which is not only available for loading chemicals, but also useful for controlling the field distribution. Herein, the perovskite array family welcomes a new member - CsPbBr3 ring arrays.
View Article and Find Full Text PDFHypochlorite serves as a significant antimicrobial agent in the human immune system, and its detection is of great importance. Herein, a novel near-infrared BODIPY-based ClO fluorescent probe (NCS-BOD-OCH) was designed and synthesized. The emission bands of NCS-BOD-OCH concentrated at 595 nm and 665 nm.
View Article and Find Full Text PDFWe study the use of random nanocomposite material as a photomask absorber layer for the next generation of extreme ultraviolet (EUV) lithography. By introducing nickel nanoparticles (NPs) randomly into a TaN host, the nanocomposite absorber layer can greatly reduce the reflectivity as compared with the standard TaN layer of the same thickness. Finite integral simulations show that the reduction in the reflectivity is mainly due to the enhanced absorption by the Ni NPs.
View Article and Find Full Text PDFIn situ transmission electron microscopy (TEM) electronic transport measurements in nanoscale systems have been previously confined to two-electrode configurations. Here, we use the focused electron beam of a TEM to fabricate a three-electrode geometry from a continuous 2D material where the third electrode operates as side gate in a field-effect transistor configuration. Specifically, we demonstrate TEM nanosculpting of freestanding graphene sheets into graphene nanoribbons (GNRs) with proximal graphene side gates, together with in situ TEM transport measurements of the resulting GNRs, whose conductance is modulated by the side-gate potential.
View Article and Find Full Text PDFIn this work, we used Ag- and Mn-doped ZnInS/ZnS quantum dots (QDs) acting as a new generation of nontoxic dual-emission QDs with simultaneous tunable emission wavelengths and dual-emission ratiometric, which makes nontoxic dual-emission QDs with broad zone tunability in the color coordinate. The Ag-doped ZnInS ternary QDs can give rise to largely tunable emission wavelengths from 497 nm to 631 nm. The ratiometric of Ag and Mn dual emissions can be tuned by controlling Ag–Mn and Mn–Mn dopant coupling.
View Article and Find Full Text PDFThe use of graphene and other two-dimensional materials in next-generation electronics is hampered by the significant damage caused by conventional lithographic processing techniques employed in device fabrication. To reduce the density of defects and increase mobility, Joule heating is often used since it facilitates lattice reconstruction and promotes self-repair. Despite its importance, an atomistic understanding of the structural and electronic enhancements in graphene devices enabled by current annealing is still lacking.
View Article and Find Full Text PDFUtilizing the insulator-metal phase transition of vanadium dioxide (VO2) crystal films, we develop a dual-functional sensor based on the coupling between VO2 nano-crystal films and Ag nanoparticles, which can probe fluorescence or Raman signals on the same substrate and it is switchable by changing temperature. At room temperature, the VO2 crystal films is insulator phase and the fluorescence signals of probe molecules (R6G) is detectable (Raman is in "off"). At high temperature (such as 85 °C), the VO2 crystal films become metallic phase.
View Article and Find Full Text PDFCVD graphene devices on stacked CVD hexagonal boron nitride (hBN) are demonstrated using a novel low-contamination transfer method, and their electrical performance is systematically compared to devices on SiO(2). An order of magnitude improvement in mobility, sheet resistivity, current density, and sustained power is reported when the oxide substrate is covered with five-layer CVD hBN.
View Article and Find Full Text PDFGraphene nanoribbons (GNRs) are promising candidates for next generation integrated circuit (IC) components; this fact motivates exploration of the relationship between crystallographic structure and transport of graphene patterned at IC-relevant length scales (<10 nm). We report on the controlled fabrication of pristine, freestanding GNRs with widths as small as 0.7 nm, paired with simultaneous lattice-resolution imaging and electrical transport characterization, all conducted within an aberration-corrected transmission electron microscope.
View Article and Find Full Text PDFGraphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics.
View Article and Find Full Text PDF