Nano zero-valent manganese (nZVMn) is theoretically expected to exhibit high reducibility and adsorption capacity, yet its feasibility, performance, and mechanism for reducing and adsorbing hexavalent uranium (U(VI)) from wastewater remain unclear. In this study, nZVMn was prepared via borohydride reduction, and its behaviors about reduction and adsorption of U(VI), as well as the underlying mechanism, were investigated. Results indicated that nZVMn exhibited a maximum U(VI) adsorption capacity of 625.
View Article and Find Full Text PDFZero-valent manganese (ZVMn) possesses high reducibility in theory, while sulfide exhibits strong affinity towards a variety of heavy metals owing to the low solubility of metal sulfides. Yet the performance and mechanisms on using sulfidized zero-valent manganese (SZVMn) to remove thallium (Tl) from wastewater still remain unclear. In this study, the performance of Tl(I) removal using SZVMn synthesized by borohydrides reduction followed by sulfides modification, with and without liquid nitrogen treatment, was compared and the mechanism behind was investigated.
View Article and Find Full Text PDF