Publications by authors named "Zhengpu Zhao"

Low-dimensional water transport can be drastically enhanced under atomic-scale confinement. However, its microscopic origin is still under debate. In this work, we directly imaged the atomic structure and transport of two-dimensional water islands on graphene and hexagonal boron nitride surfaces using qPlus-based atomic force microscopy.

View Article and Find Full Text PDF

The nature of hydrated proton on solid surfaces is of vital importance in electrochemistry, proton channels, and hydrogen fuel cells but remains unclear because of the lack of atomic-scale characterization. We directly visualized Eigen- and Zundel-type hydrated protons within the hydrogen bonding water network on Au(111) and Pt(111) surfaces, using cryogenic qPlus-based atomic force microscopy under ultrahigh vacuum. We found that the Eigen cations self-assembled into monolayer structures with local order, and the Zundel cations formed long-range ordered structures stabilized by nuclear quantum effects.

View Article and Find Full Text PDF

The premelting layer plays an important role in ice growth, but there is a significant gap in our knowledge between the atomistic premelting surface structure and the macroscopic growth mechanism. In this work, using large-scale molecular dynamics simulation, we reveal the existence of clusters on the premelting surface, as an intermediate feature bridging the gap. We show the spontaneous formation and evolution of clusters, and they form a stable distribution determined by the growth rate.

View Article and Find Full Text PDF