Publications by authors named "Zhengping Hu"

Background: EMCN (endomucin), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of VEGF (vascular endothelial growth factor) activity through modulating VEGFR2 (VEGF receptor 2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model.

View Article and Find Full Text PDF

The endothelial glycocalyx, lining the apical surface of the endothelium, is involved in a host of vascular processes. The glycocalyx is comprised of a network of membrane-bound proteoglycans and glycoproteins along with associated plasma proteins. One such glycoprotein is endomucin (EMCN), which our lab has revealed is a modulator of VEGFR2 function.

View Article and Find Full Text PDF

Self-supervised contrastive learning draws on power representational models to acquire generic semantic features from unlabeled data, and the key to training such models lies in how accurately to track motion features. Previous video contrastive learning methods have extensively used spatially or temporally augmentation as similar instances, resulting in models that are more likely to learn static backgrounds than motion features. To alleviate the background shortcuts, in this paper, we propose a cross-view motion consistent (CVMC) self-supervised video inter-intra contrastive model to focus on the learning of local details and long-term temporal relationships.

View Article and Find Full Text PDF

Background: Endomucin (EMCN), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of vascular endothelial growth factor (VEGF) activity through modulating VEGF receptor 2 (VEGFR2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model.

View Article and Find Full Text PDF

Compound 7-16 was designed and synthesized in our previous study and was identified as a more potential selective 5-HT receptor antagonist and inverse agonist for treating Parkinson's disease psychosis (PDP). Then, the metabolism, disposition, and excretion properties of 7-16 and its potential inhibition on transporters were investigated in this study to highlight advancements in the understanding of its therapeutic mechanisms. The results indicate that a total of 10 metabolites of 7-16/[C]7-16 were identified and determined in five species of liver microsomes and in rats using UPLC-Q Exactive high-resolution mass spectrometry combined with radioanalysis.

View Article and Find Full Text PDF

The endothelial glycocalyx, located at the luminal surface of the endothelium, plays an important role in the regulation of leukocyte adhesion, vascular permeability, and vascular homeostasis. Endomucin (EMCN), a component of the endothelial glycocalyx, is a mucin-like transmembrane glycoprotein selectively expressed by venous and capillary endothelium. We have previously shown that knockdown of EMCN impairs retinal vascular development in vivo and vascular endothelial growth factor 165 isoform (VEGF165)-induced cell migration, proliferation, and tube formation by human retinal endothelial cells in vitro and that EMCN is essential for VEGF165-stimulated clathrin-mediated endocytosis and signaling of VEGF receptor 2 (VEGFR2).

View Article and Find Full Text PDF

Opiates produce analgesia via G-protein signaling, and adverse effects, such as respiratory depression and decreased bowel motility, by β-arrestin pathway. Oliceridine, a G protein-biased MOR agonist, only presents modest safety advantages as compared to other opiates in clinical trials, possibly due to its limited bias. Our previous study shown that LPM3480392, a full MOR biased agonist, is selective for the Gi pathway over the β-arrestin-2.

View Article and Find Full Text PDF

The neurokinin-3 receptor (NK3R) is one of three receptors that recognize neurokinins. The finding that pharmacological blockade of neurokinin B (NKB) signaling with an oral NK3R antagonist can significantly improve hot flash symptoms independent of any hormonal effect fits strongly suggest that NK3R is a viable drug target and that drugs targeting this receptor could be novel pharmacotherapies. Currently no NK3R ligands have been approved for the treatment of human disorders.

View Article and Find Full Text PDF

Modern action recognition techniques frequently employ two networks: the spatial stream, which accepts input from RGB frames, and the temporal stream, which accepts input from optical flow. Recent researches use 3D convolutional neural networks that employ spatiotemporal filters on both streams. Although mixing flow with RGB enhances performance, correct optical flow computation is expensive and adds delay to action recognition.

View Article and Find Full Text PDF

is a perennial herb, the roots of which are abundant in asperosaponin VI, which has important medicinal value. However, the molecular mechanism underlying the biosynthesis of asperosaponin VI in remains unclear. In present study, a comprehensive investigation of asperosaponin VI biosynthesis was conducted at the levels of metabolite and transcript during root development.

View Article and Find Full Text PDF

Galectin-3 (Gal3) is a carbohydrate-binding protein reported to promote angiogenesis by influencing vascular endothelial growth factor-A receptor 2 (VEGFR2) signal transduction. Here we evaluated whether the ability of Gal3 to function as an angiogenic factor involved vascular endothelial growth factor (VEGF). To address this possibility we used human retinal microvascular endothelial cells (HRECs) to determine whether exogenous Gal3 requires VEGF to activate VEGFR2 signaling and if Gal3 is required for VEGF to activate VEGFR2.

View Article and Find Full Text PDF

The endothelial glycocalyx is a negatively charged, carbohydrate-rich structure that arises from the luminal surface of the vascular endothelium and is comprised of proteoglycans, glycoproteins, and glycolipids. The glycocalyx, which sits at the interface between the endothelium and the blood, is involved in a wide array of physiological and pathophysiological processes, including as a mechanotransducer and as a regulator of inflammation. Most recently, components of the glycocalyx have been shown to play a key role in controlling angiogenesis.

View Article and Find Full Text PDF

Background: Sturge-Weber syndrome is a disorder marked by a distinctive facial capillary malformation, neurological abnormalities, and ocular abnormalities such as glaucoma and choroidal hemangioma.

Case Presentation: We report a case of progressively formed retinal vessel malformation in a premature male infant with Sturge-Weber syndrome and retinopathy of prematurity, after treatment with intravitreal anti-vascular endothelial growth factor (VEGF). The baby was born at 30 weeks gestation with a nevus flammeus involving his left eyelids and maxillary area.

View Article and Find Full Text PDF

Connexins are the structural components of gap junctions and hemichannels that mediate the communication and exchange of small molecules between cells, and between the intracellular and extracellular environment, respectively. Connexin (Cx) 46 is predominately expressed in lens fiber cells, where they function in maintaining the homeostasis and transparency of the lens. Cx46 mutations are associated with impairment of channel function, which results in the development of congenital cataracts.

View Article and Find Full Text PDF

Endomucin (EMCN) is the type I transmembrane glycoprotein, mucin-like component of the endothelial cell glycocalyx. We have previously shown that EMCN is necessary for vascular endothelial growth factor (VEGF)-induced VEGF receptor 2 (VEGFR2) internalization and downstream signaling. To explore the structural components of EMCN that are necessary for its function and the molecular mechanism of EMCN in VEGF-induced endothelial functions, we generated a series of mouse EMCN truncation mutants and examined their ability to rescue VEGF-induced endothelial functions in human primary endothelial cells (EC) in which endogenous EMCN had been knocked down using siRNA.

View Article and Find Full Text PDF

The non-receptor tyrosine phosphatase SHP2, encoded by PTPN11, plays an indispensable role in tumors driven by oncogenic KRAS mutations, which frequently occur in colorectal cancer. Here, PCC0208023, a potent SHP2 allosteric inhibitor, was synthesized to evaluate its inhibitory effects against the SHP2 enzyme, and the KRAS mutant colorectal cancer in vitro and in vivo, and its impart on the RAS/MAPK pathway. Consistent with an allosteric mode of inhibition, PCC0208023 can non-competitively inhibit the activity of full-length SHP2 enzyme, but lacks activity against the free catalytic domain of SHP2.

View Article and Find Full Text PDF

The increased PD-L1 expression induces poorer prognosis in melanoma. The small molecule inhibitors of PD-1/PD-L1 pathways have been an encouraging drug development strategy because of good affinity and oral bioavailability without immunogenicity and immunotoxicities of PD-1/PD-L1 antibodies. In this study, we studied the effects of PCC0208025 (BMS202), a small molecule inhibitor of PD-L1, on PD-1/PD-L1 binding and the cytokines secretion in human CD3+ cells in vitro.

View Article and Find Full Text PDF

Epithelial to mesenchymal transition (EMT) plays an important role in the pathogenesis of proliferative vitreoretinopathy (PVR). We aimed to demonstrate the role of mouse double minute 2 (MDM2) in transforming growth factor-beta 2 (TGF-β2)-induced EMT in human retinal pigment epithelial cells (RPEs). Immunofluorescence was used to assess MDM2 expression in epiretinal membranes (ERMs) from patients with PVR.

View Article and Find Full Text PDF

Background: To investigate the long-term outcomes and complications of scleral-fixated intraocular lens (SFIOL) implantation without conjunctival peritomies and sclerotomy in patients with a history of ocular trauma with inadequate capsular support during primary pars plana vitrectomy or silicone oil removal.

Methods: Records of ocular trauma patients who underwent implantation of SFIOL without conjunctival peritomies and sclerotomy during primary pars plana vitrectomy or silicone oil removal.

Results: Sixty-nine eyes of 69 patients were included in this study.

View Article and Find Full Text PDF

Mouse double minute (MDM)2 single nucleotide polymorphism (SNP) 309G allele in the second promoter of MDM2 enhances vitreous-induced expression of Mdm2 and degradation of the tumor suppressor protein p53. This MDM2 contributes to certain cancer development and experimental proliferative vitreoretinopathy. The goal of this study is to discover a novel strategy to only block vitreous-induced expression of Mdm2 for preventing vitreous-induced cell proliferation and survival and thus find a potential novel strategy to treat proliferation-related diseases.

View Article and Find Full Text PDF

We have previously shown that knockdown of endomucin (EMCN), an integral membrane glycocalyx glycoprotein, prevents VEGF-induced proliferation, migration, and tube formation and angiogenesis . In the endothelium, VEGF mediates most of its angiogenic effects through VEGF receptor 2 (VEGFR2). To understand the role of EMCN, we examined the effect of EMCN depletion on VEGFR2 endocytosis and activation.

View Article and Find Full Text PDF

Poor prognosis is associated with melanoma due to immunosuppression profiles, suggesting that immune alterations have an important role in the occurrence, growth, and metastasis of melanoma. Here, we found that PCC0208018, a small-molecule compound, enhanced T cell proliferation and activation to release interferon gamma (IFN-γ) and interleukin-2 (IL-2) without blocking the programmed cell death 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) binding and did not directly affect tumor cell viability in vitro. Furthermore, PCC0208018 increased the phosphorylation of protein kinase B (PKB/AKT) as well as extracellular regulated protein kinases (ERK) in human peripheral blood mononuclear cells (PBMCs) in vitro.

View Article and Find Full Text PDF

The increased PD-L1 induces poorer prognosis in melanoma. The treatment with PD-1/PD-L1 antibodies have a low response rate. The combination immunotherapies are the encouraging drug development strategy to receive maximal therapeutic benefit.

View Article and Find Full Text PDF

Connexin channels help maintain eye lens homeostasis and transparency. The G143R missense substitution in connexin (Cx) 46 is associated with congenital Coppock cataracts; however, the underlying molecular mechanism is largely unknown. Here, we report that compared with WT Cx46, the G143R substitution abolishes hemichannel conductance in oocytes and in HeLa cells.

View Article and Find Full Text PDF