Publications by authors named "Zhengping Dong"

Supported nano-catalysts with environmental sustainability and high catalytic performance are of great research interest for sustainable catalysis. In this article, a supported nano-catalyst, FeA-NC, with high catalytic performance was prepared by anchoring the transition metal iron onto nitrogen-doped porous carbon materials using chitosan as a raw material. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) measurement results demonstrated that the obtained catalyst has an excellent mesoporous structure, and that the element Fe is evenly distributed.

View Article and Find Full Text PDF

The direct oxidative esterification of benzaldehydes and benzyl alcohols to high value-added aromatic esters under mild and green reaction conditions is significant in the fine chemical industry. The accurate design of catalysts with high catalytic performance is crucial for this process. Herein, 2,4,6-trimethylpyridine, benzoic anhydride, and terephthalaldehyde were used to prepare a covalent organic framework (COF) material, which was then used as a template to construct a mesoporous CeO-supported Au nanoparticles catalyst.

View Article and Find Full Text PDF

The selective hydrogenation of alkynes to alkenes is widely applied in the chemical industry; nevertheless, achieving highly selective hydrogenation with high catalytic activity is considerably challenging. Herein, ultrafine PdCu bimetallic nanoparticles encapsulated by high-surface-area mesoporous α-AlO were prepared by high-temperature calcination-reduction using a porous organic framework (POF) as the template. As-obtained PdCu@α-AlO exhibited a high selectivity of 95% for the semi-hydrogenation of phenylacetylene as a probe reaction under mild reaction conditions.

View Article and Find Full Text PDF

Heterogeneous noble metal-based catalysts with stable, precise structures and high catalytic performance are of great research interest for sustainable catalysis. In this article, we designed a novel core-shell catalyst, Pd@UiO-66-NH@mSiO, with Pd@UiO-66-NH as the core and mesoporous SiO (mSiO) as the shell. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) measurement results demonstrated that the obtained catalyst has an excellent core-shell structure.

View Article and Find Full Text PDF

Selective hydrogenation of alkynes to obtain alkenes is a key reaction in petrochemical and fine chemical industries. However, the development of stable and highly selective catalysts with uniformly dispersed active sites is still immensely challenging for the semi-hydrogenation of alkynes. In this study, N-doped porous carbon nanospheres (NPCNs) were synthesized by the nanoemulsion self-assembly and subsequently carbonization method.

View Article and Find Full Text PDF

The introduction of functional groups or oxygen vacancies into Pd-based electrocatalysts is a powerful strategy for enhancing the electrocatalytic performances for many electrocatalytic reactions. Herein, an amorphous ceria-modified Pd nanocomposite anchored on D-4-amino-phenylalanine (DAP)-functionalized graphene nanosheets (Pd-CeO/FGS) was prepared by a facile and effective one-pot synthetic strategy and further used as an electrocatalyst for the ethanol oxidation reaction (EOR) in alkaline electrolytes. The obtained Pd-CeO/FGS exhibits relatively high electrocatalytic activity, fast kinetics and excellent antipoisoning ability as well as robust durability for EOR, outperforming the comparable electrocatalysts as well as commercial Pd/C.

View Article and Find Full Text PDF

Semi-hydrogenation of alkynes to prepare alkenes is an important reaction in the petrochemical and fine chemical industries. The use of conventional Pd nanoparticle-based catalysts is limited by alkyne over-hydrogenation and low Pd utilization. In this study, a nitrogen-doped mesoporous carbon material (m-NC), which was rich in defect sites after Zn volatilization, was fabricated by the carbonization of ZIF-8.

View Article and Find Full Text PDF

Chemoselective hydrogenation of unsaturated organic compounds is a significant research topic in the catalysis field. Herein, a sulfur-doped ordered mesoporous carbon (SMC) material was prepared to anchor ultrafine platinum (Pt) clusters for the chemoselective hydrogenation of halogenated nitroarenes. The confinement effect of the ordered pores and the strong metal-support interaction caused by Pt clusters and sulfur atoms, efficiently suppress the aggregation and regulate the electronic states of the ultrafine Pt clusters.

View Article and Find Full Text PDF

The catalytic transformation of the biomass platform compound levulinic acid (LA) to γ-valerolactone (GVL) is a vital reaction to produce related renewable chemicals and fuels. Developing stable catalysts with highly dispersed and accessible ultrafine metal nanoparticle (NP) active sites for the hydrogenation of LA under solvent-free conditions is still a major challenge. Herein, a versatile nano-emulsion self-assembly method was employed to fabricate N-doped carbon nanospheres with a high specific surface area and hierarchically porous structure.

View Article and Find Full Text PDF

Heterogeneous noble metal-based catalysts with stable, precise structures and high catalytic performance are of great research interest for sustainable catalysis. Herein, we designed the novel sandwich-like metal-organic-framework composite nanocatalyst UiO-66-NH@Pt@mSiO using UiO-66-NH@Pt as the core, and mesoporous SiO as the shell. The obtained UiO-66-NH@Pt@mSiO catalyst shows a well-defined structure and interface, and the protection of the mSiO shell can efficiently prevent Pt NPs from aggregating and leaching in the reaction process.

View Article and Find Full Text PDF

The fabrication of stable and efficient catalysts for green and economic catalytic transformation is significant. Here, highly stable covalent triazine frameworks (CTF-1) were used as the supporting material for anchoring ultrafine Pd nanoparticles (NPs) via a facile impregnation process and a one-pot calcination-reduction strategy. The widespread dispersion of ultrafine Pd NPs was a result of the abundant high nitrogen-content triazine groups of CTF-1 that endowed the catalyst Pd@CTF-1 with high catalytic activity.

View Article and Find Full Text PDF

The catalytic dehydrogenation of readily available alcohols to high value-added carbonyl compounds is a research hotspot with scientific significance. Most of the current research about this reaction is performed with noble metal-based homogeneous catalysts of high price and poor reusability. Herein, highly dispersed Co-cluster-decorated N-doped carbon nanotubes (Co/N-CNTs) were fabricated via a facile strategy and used for the dehydrogenation of alcohols with high efficiency.

View Article and Find Full Text PDF

In-situ encapsulation of tiny and well-dispersed Pd nanoparticles (Pd NPs) in zeolitic imidazolate frameworks (ZIFs) was firstly achieved using a one-pot and facile methanol-mediated growth approach, in which methanol served as both solvent and a mild reductant. The microstructure, morphology, crystallinity, porosity as well as evolution process of the catalysts were determined by TEM, XRD, N adsorption and UV-vis spectra. Due to the complete encapsulation of such Pd NPs combined with ultrahigh surface area and uniform microporous structure of ZIF-8, the resulting Pd@ZIF-8-60 min nanocomposite exhibited more superior catalytic activity for olefins hydrogenation with TOF of 7436 h and excellent size selectivity than previously reported catalysts.

View Article and Find Full Text PDF

Non-noble-metal-based catalysts for catalyzing the oxidative coupling of aldehydes and ammonia represent an efficient atom-economical synthetic route to produce nitriles. In this study, an effective Fe-modified N-doped carbon catalyst anchored on fibrous silica nanospheres (Fe-N/KCC-1-T) was successfully prepared by a facile strategy. 1,10-Phenanthroline with a strong chelating ability ensured the homogeneous, ultrafine distribution of Fe-based active sites, and the KCC-1 support material effectively enhanced the accessibility to these active sites, which corresponded to center-radial pore channels and a high surface area.

View Article and Find Full Text PDF

Metal-nanocluster-doped porous materials are attracting considerable research attention due to their specific catalytic performance. In this study, core-shell metal-organic frameworks@covalent organic polymer (MOF@COP) nanocomposites were formed by the covalent linking of chemically stable COP on the surface of size-selective UiO-66-NH. Pd nanoclusters with an average diameter of ∼0.

View Article and Find Full Text PDF

Background: Chediak-Higashi Syndrome (CHS) is a rare autosomal recessive disease caused by loss of function of the lysosomal trafficking regulator protein. The causative gene LYST/CHS1 was cloned and identified in 1996, which showed significant homology to other species such as bovine and mouse. To date, 74 pathogenic or likely pathogenic mutations had been reported.

View Article and Find Full Text PDF

The fabrication of narrow-sized metal nanoclusters for heterogeneous catalysis has attracted widespread research attention. Nevertheless, it is still a significant challenge to fabricate highly dispersed metal-nanocluster-based catalysts with high activity and stability. In this study, 1,3,5-benzenetricarboxylate and 1,2-diaminocyclohexane were used as precursors to fabricate porous organic cages (POCs), CC3-R.

View Article and Find Full Text PDF

The direct oxidation of alcohols to esters through a green and cost-effective strategy is a fascinating chemical synthesis route. In this study, an environmentally friendly N-doped porous carbon encapsulated Co-based nano-catalyst was prepared via a simple carbonization procedure, utilizing renewable chitosan, accessible dicyandiamide and low-cost Co(OAc)2 as co-precursors. The obtained Co@NC-2-T catalysts were successfully used in selective oxidation of aromatic alcohols with methanol to esters under atmospheric reaction conditions.

View Article and Find Full Text PDF

The development of porous organic polymer (POP)-based materials with controllable structures is highly desirable for catalysis, drug delivery, and chemical adsorption. In this work, we prepared unique porous magnetic core-shell POP nanospheres (FeO@PDA@POP) through a facile strategy. These nanospheres contained a core of magnetic FeO nanoparticles (NPs), a hydrophilic intermediate layer of dopamine and a POP outer layer.

View Article and Find Full Text PDF

The fabrication of ultrafine noble metal nanoparticle (NMNP)-based catalysts is significant for heterogeneous catalysis due to their excellent performance for organic transformations. In this study, N-doped micro-mesoporous hollow carbon nanospheres (HCN) with a nitrogen content of ∼3.5 wt% are easily prepared by simple carbonization.

View Article and Find Full Text PDF

Four types of core-shell materials with magnetic FeO microparticles as the core were prepared through different approaches using dopamine, glucose, tetrabutyl orthotitanate (TBOT), and tetraethyl orthosilicate (TEOS) as the shell precursor, respectively. CeO nanoparticles (NPs) was successfully immobilized onto these supports to fabricate efficient catalysts for the tandem catalytic synthesis of imines from benzyl alcohols and anilines at low temperature under air atmosphere. The as-prepared catalysts were detailedly characterized by TEM, EDX, XRD, FT-IR, XPS VSM, ICP, and CO-TPD.

View Article and Find Full Text PDF

Porous organic polymers (POPs) containing nitrogenous substituents have potential practical applications as heterogeneous catalysts based upon controlled porous structure and surface-anchored noble metal nanoparticles (NMNPs). In this work we prepared a POP material from piperazine and cyanuric chloride starting materials (PC-POP). The PC-POP material contains numerous triazinyl moieties, thus rendering the pores hydrophobic.

View Article and Find Full Text PDF

The fabrication of stable porous organic polymers (POPs) with heteroatoms that can firmly anchor noble metal nanoparticles (NPs) is a challenging and significant task for heterogeneous catalysis. In the current work, we used piperazine and cyanuric chloride as precursors and successfully fabricated a PC-POP material. Then, through the impregnation method and subsequently the reduction method, ultrafine Pt NPs were confined in the PC-POP with a high dispersion.

View Article and Find Full Text PDF

Fabrication of non-noble metal-based heterogeneous catalysts by a facile and cost-effective strategy for ecofriendly catalytic transfer hydrogenation (CTH) is of great significance for organic transformations. A cobalt@nitrogen-doped carbon (Co@NC) catalyst was prepared from renewable biomass-derived sucrose, harmless melamine, and earth-abundant Co(AcO) as the precursor materials by hydrothermal treatment and carbonization. Co nanoparticles (NPs) were coated with NC shells and uniformly embedded in the NC framework.

View Article and Find Full Text PDF

Use of renewable raw materials for fabrication catalysts with excellent catalytic performance is of considerable importance for sustainable chemistry. Here, biowaste soybean curd residue (SCR) was used to prepare porous N-doped carbon materials (PNCM) via the carbonization method, and subsequently modified with small Pd nanoparticles (NPs) to generate the Pd/PNCM catalyst. Pd/PNCM was used for catalytic hydrogenation of phenol to cyclohexanone, as the latter is an important chemical intermediate that is usually produced under harsh reaction conditions.

View Article and Find Full Text PDF