Publications by authors named "Zhengmei Mao"

Although effective initially, prolonged androgen deprivation therapy (ADT) promotes neuroendocrine differentiation (NED) and prostate cancer (PCa) progression. It is incompletely understood how ADT transcriptionally induces NE genes in PCa cells. CREB1 and REST are known to positively and negatively regulate neuronal gene expression in the brain, respectively.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the presence of two hallmark pathologies: the accumulation of Amyloid beta (Aβ) and tau proteins in the brain. There is a growing body of evidence suggesting that astrocytes, a type of glial cell in the brain, play crucial roles in clearing Aβ and binding to tau proteins. However, due to the heterogeneity of astrocytes, the specific roles of different astrocyte subpopulations in response to Aβ and tau remain unclear.

View Article and Find Full Text PDF

Although effective initially, prolonged androgen deprivation therapy (ADT) promotes neuroendocrine differentiation (NED) and prostate cancer (PCa) progression. It is incompletely understood how ADT transcriptionally induces NE genes in PCa cells. CREB1 and REST are known to positively and negatively regulate neuronal gene expression in the brain, respectively.

View Article and Find Full Text PDF

The melanocortin action is well perceived for its ability to regulate body weight bidirectionally with its gain of function reducing body weight and loss of function promoting obesity. However, this notion cannot explain the difficulty in identifying effective therapeutics toward treating general obesity via activation of the melanocortin action. Here, we provide evidence that altered melanocortin action is only able to cause one-directional obesity development.

View Article and Find Full Text PDF
Article Synopsis
  • Dynamin-Related-Protein 1 (DRP1) plays a crucial role in regulating the fission of mitochondria and peroxisomes, and its effects on the endoplasmic reticulum (ER) remain underexplored.
  • Researchers developed an adipose tissue-specific DRP1 knockout model to examine how DRP1 affects lipid droplet (LD) dynamics and metabolism.
  • Findings showed that in the absence of DRP1, lipid droplets in adipose tissue displayed abnormal sizes and shapes, disrupting lipid metabolism and mitochondrial function, which could be corrected by overexpressing DRP1.
View Article and Find Full Text PDF

Recent studies have highlighted the critical role of angiogenesis and sympathetic innervation in adipose tissue remodeling during the development of obesity. Therefore, developing an easy and efficient method to document the dynamic changes in adipose tissue is necessary. Here, we describe a modified immunofluorescent approach that efficiently co-stains blood vessels and nerve fibers in adipose tissues.

View Article and Find Full Text PDF

The use of embryonic stem cells (ESCs) to regenerate distal lung epithelia damaged by injuries or diseases requires development of safe and efficient methodologies that direct ESC differentiation into transplantable distal lung epithelial progenitors. Time-consuming culture procedure and low differentiation efficiency are major problems that are associated with conventional differentiation approaches via embryoid body formation. The use of a growth factor cocktail or a lung-specific cell-conditioned medium to enrich definitive endoderm for efficient differentiation of mouse ESCs (mESC) into alveolar epithelial progenitor type II cells (ATIICs) has been reported, but not yet successful for generating a homogenous population of ATIICs for tissue regeneration purpose, and it remains unclear whether or not those mESC-derived ATIICs possess normal biological functions.

View Article and Find Full Text PDF

We examined tyrosine hydroxylase (TH-GAL4) expression and anti-TH immunoreactivity in the Drosophila protocerebrum and characterized single cell clones of the TH-GAL4 neurons. Eight clusters of putative dopaminergic neurons were characterized. Neurons in three of the clusters project to the mushroom body neuropil: PAM neurons project to the medial portion of the horizontal lobes; PPL1 neurons project to the vertical lobes, the junction area, the heel and distal peduncle; and PPL2ab neurons project to the calyx.

View Article and Find Full Text PDF

Targeted gene expression has become a standard technique for the study of biological questions in Drosophila. Until recently, transgene expression could be targeted in the dimension of either time or space, but not both. Several new systems have recently been developed to direct transgene expression simultaneously in both time and space.

View Article and Find Full Text PDF

The GAL4-based Gene-Switch system has been engineered to regulate transgene expression in Drosophila in both time and space. We constructed a Gene-Switch transgene in which Gene-Switch expression is restricted spatially by a defined mushroom body enhancer. This system allows Gene-Switch to be active only in the mushroom bodies and only on administration of the pharmacological Gene-Switch ligand RU486.

View Article and Find Full Text PDF