We propose a scheme for gain measurement of microwave (MW) antenna with heterodyne bichromatic excitation in Rydberg atoms via electromagnetically induced transparency (EIT). The Rydberg-EIT atoms serve as a frequency mixer with a strong locally oscillating MW field and a weak signal field. A large dispersion appears in the EIT windows due to the interference of two sub-EIT systems, which much narrows the transmission spectrum.
View Article and Find Full Text PDFAn enhanced measurement of the microwave (MW) electric (E) field is proposed using an optical grating in Rydberg atoms. Electromagnetically induced transparency (EIT) of Rydberg atoms appears driven by a probe field and a control field. The EIT transmission spectrum is modulated by an optical grating.
View Article and Find Full Text PDFA scheme for the measurement of a microwave (MW) electric field is proposed via multi-photon coherence in Rydberg atoms. It is based on the three-photon electromagnetically induced absorption (TPEIA) spectrum. In this process, the multi-photon produces a narrow absorption peak, which has a larger magnitude than the electromagnetically induced transparency (EIT) peak under the same conditions.
View Article and Find Full Text PDFAn efficient scheme of phase measurement of a radio-frequency (RF) field is proposed by interacting dark states. Under the condition of electromagnetically induced transparency (EIT), the four-level Rydberg atom exhibits two windows. Compared with the transmission spectrum on resonance, the linewidths of absorption peaks off resonance are very narrow due to the interaction of double dark states.
View Article and Find Full Text PDFExtreme ultraviolet attosecond pulses, generated by a process known as laser-induced electron recollision, are a key ingredient for attosecond metrology, providing a tool to precisely initiate and probe subfemtosecond dynamics in atoms, molecules, and solids. However, extending attosecond metrology to scrutinize the dynamics of the inner-shell electrons is a challenge, that is because of the lower efficiency in generating the required soft x-ray (ℏω>300 eV) attosecond bursts. A way around this problem is to use the recolliding electron to directly initiate the desired inner-shell process, instead of using the currently low flux x-ray attosecond sources.
View Article and Find Full Text PDF