Featured with the highest possible energy density, anode-free lithium-metal batteries (AFBs) are still challenged by the fast capacity decay, especially for the ones operated in commercial carbonate electrolytes, which can be ascribed to the poor stability and continual broken/formation of the solid-electrolyte interface (SEI) formed on the anode side. Here, sacrificial additives, which have low solubility in carbonate electrolytes and can be continuously released, are proposed for AFBs. The sacrificial and continuously-releasing feature gifts the additives the capability to form and heal the SEI during the long-term cycling process, thus minimizing the loss of active Li and enabling the AFLMBs with high loading LiNiCoMnO (21.
View Article and Find Full Text PDFThe utilization of thin zinc (Zn) anodes with a high depth of discharge is an effective strategy to increase the energy density of aqueous Zn metal batteries (ZMBs), but challenged by the poor reversibility of Zn electrode due to the serious Zn-consuming side reactions at the Zn||electrolyte interface. Here, we introduce 2-bromomethyl-1,3-dioxolane (BDOL) and methanol (MeOH) as electrolyte additive into aqueous ZnSO electrolyte. In the as-formulated electrolyte, BDOL with a strong electron-withdrawing group (-CHBr) tends to pair with the HO-Zn-MeOH complex, leading to the formation of organobromine-partnered HO-Zn-MeOH cluster ions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
The cobalt-free layered oxide cathode of LiNiMnO is promising for high-energy-density lithium-ion batteries (LIBs). However, under high-voltage conditions, severe side reactions between the Co-free cathode and electrolyte, as well as grain boundary cracks and pulverization of particles, hinder its practical applications. Herein, an electrolyte regulation strategy is proposed by adding fluoroethylene carbonate (FEC) and LiPOF as electrolyte additives in carbonate-based electrolytes to address the above issues.
View Article and Find Full Text PDFLithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2023
Stable zinc (Zn)/electrolyte interface is critical for developing rechargeable aqueous Zn-metal batteries with long-term stability, which requires the dense and stable Zn electrodeposition. Herein, an interfacial lattice locking (ILL) layer is constructed via the electro-codeposition of Zn and Cu onto the Zn electrodes. The ILL layer shows a low lattice misfit (δ = 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2023
The use of non-solvating, or as-called sparingly-solvating, electrolytes (NSEs), is regarded as one of the most promising solutions to the obstacles to the practical applications of Li-S batteries. However, it remains a puzzle that long-life Li-S batteries have rarely, if not never, been reported with NSEs, despite their good compatibility with Li anode. Here, we find the capacity decay of Li-S batteries in NSEs is mainly due to the accumulation of the dead Li S at the cathode side, rather than the degradation of the anodes or electrolytes.
View Article and Find Full Text PDFLi-ion batteries (LIBs) that can operate under low temperature (LT) conditions are essential for applications in orbital missions, subsea areas, and electric vehicles. Unfortunately, severe capacity loss is witnessed due to tremendous kinetic barriers that emerge at LT. Herein, to surmount such kinetic limitations, a low dielectric environment is tamed throughout the bulk electrolyte, which efficaciously brought the Li desolvation energy down to 30.
View Article and Find Full Text PDF