To achieve efficient and cost-effective treatment for the rural wastewater, a novel humus biochemical system (HBS) process derived from humus bio-functional material was proposed to treat rural wastewater under low dissolved oxygen (DO) conditions, and the operational performance, sludge characteristics, and microbial community in HBS were systematically investigated in this study. The results indicated that the HBS reactor could be operated stably under low DO levels of 0.2-0.
View Article and Find Full Text PDFBackground: It appears that tumour-infiltrating neoantigen-reactive CD8 + T (Neo T) cells are the primary driver of immune responses to gastrointestinal cancer in patients. However, the conventional method is very time-consuming and complex for identifying Neo T cells and their corresponding T cell receptors (TCRs).
Methods: By mapping neoantigen-reactive T cells from the single-cell transcriptomes of thousands of tumour-infiltrating lymphocytes, we developed a 26-gene machine learning model for the identification of neoantigen-reactive T cells.
ACS Appl Mater Interfaces
April 2024
CuInTe (CIT) is one of the typical ternary chalcogenides known for its characteristic mixed polyanionic/polycationic site defects, making it a subject of continuous interest in the field of thermoelectrics. In this work, we propose a chemical composition modulation strategy for CIT by alloying GeTe and then introducing a copper deficiency (denoted by V). This strategy aims to unpin its Fermi level () and shift into the valence band (VB) while simultaneously enabling coupling between the optical and acoustic phonon, thereby providing an extra phonon scattering path at low frequencies.
View Article and Find Full Text PDFRecovering high-value biomaterials from anaerobic digestion sludge (ADS) has attracted considerable attention. However, the molecular features and biological effects of abundant dissolved organic matters (DOMs) in ADS are still unclear, which limits the efficient recycling and application of these bioproducts. This study investigated the molecular composition and transformation of DOMs recovered from ADS through a mild-temperature alkali-hydrothermal treatment (AHT) with ultrahigh-resolution mass spectrometry and energy spectroscopy, and the fertilizing effects of DOMs were evaluated by rice hydroponics.
View Article and Find Full Text PDFHigh-resolution mass spectrometry was extensively applied in molecular composition and transformation pathways of dissolved organic matter (DOM) in wastewater sludge treatments. Sample pretreatment methods and electrospray ionization (ESI) modes significant affect the accuracy of molecular characterization for DOM. This study investigated the effects of pretreatment methods (styrene divinyl benzene polymer (PPL), octadecyl (C18), and electrodialysis (ED)) on molecular characteristics of DOM in two typical wastewater sludges (waste activated sludge (WAS) and anaerobic digestion sludge (ADS)) analyzed by FT-ICR MS in both positive ESI (ESI (+)) and negative ESI (ESI (-)) modes.
View Article and Find Full Text PDFCuSnSe (CTS) ternary chalcogenides have potential applications in thermoelectrics for they crystallize in a high-symmetry cubic structure and consist of earth-abundant and eco-friendly elements. However, the pristine CTS does not have optimal thermoelectric (TE) performance (ZT = 0.35 at ∼700 K), so further investigation is required in this regard.
View Article and Find Full Text PDFGuided by the concept of "phonon-liquid electron-crystal", many n-type argyrodite compounds have been developed as candidates for thermoelectric (TE) materials. In recent years, the p-type CuGeSe (CGS) compound has attracted some attention in TEs due to the presence of very strong atomic vibrational arharmonicity inside the sublattice, which is caused by the weak bonding between Cu ions and [GeSe]. However, its TE performance is still poor, with a value of only 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
SnTe has been regarded as a potential alternative to PbTe in thermoelectrics because of its environmentally friendly features. However, it is a challenge to optimize its thermoelectric (TE) performance as it has an inherent high hole concentration (∼2 × 10 cm) and low mobility (μ∼18 cm V s) at room temperature (RT), arising from a high intrinsic Sn vacancy concentration and large energy separation between its light and heavy valence bands. Therefore, its TE figure of merit is only 0.
View Article and Find Full Text PDFRecovering high value-added resources from waste activated sludge (WAS) is a potential way for the sustainable wastewater treatment. In this study, hydrothermal treatment at 180 °C was used to simultaneously improve sludge dewaterability and recover sludge organic matters (SOMs). The recovered SOMs were subsequently employed as precursors to prepare nitrogen-doped porous carbon nanosheets via a facile stepwise synthesis method.
View Article and Find Full Text PDFThe argyrodite compound, AgSnSe (ATS), which is one of the promising thermoelectric (TE) candidates, is receiving growing attention in thermoelectrics recently. However, its TE performance is still low and phases are unstable as the temperature varies. In this work, inspired by entropy engineering, we eliminate the β/γ phase transformation at ∼355 K via alloying Ga, thus extending its high-temperature cubic phase from 320 to 730 K.
View Article and Find Full Text PDFIn this study, the molecular transformation of sludge biopolymers during hydrothermal treatment with the temperature ranging from 25 °C to 200 °C was examined and was seen to significantly affect the macrophysical properties (dewaterability and rheological property) of sludge. The results showed that the sludge dewaterability and flow ability under high shear stress deteriorated by a hydrothermal process at 25 °C to 120 °C, but the deterioration alleviated above the temperature threshold of 120 °C. The consistence of changes in sludge dewaterability and rheological property in HT process was mainly attributed to the variation in gel properties of soluble biopolymer.
View Article and Find Full Text PDFCu-Sn-S family of compounds have been considered as very competitive thermoelectric candidates in recent years due to their abundance and eco-friendliness. The first-principles calculation reveals that the density of states (DOS) increases in the vicinity of the Fermi level (E) upon an incorporation of Se in the CuSnSSe (x = 0-2.0) system, which indicates the occurrence of resonant states.
View Article and Find Full Text PDFOwing to their unique crystal and band structures, in thermoelectrics increasing attention has recently been paid to compounds of the ternary I-III-VI chalcopyrite family. In this work, unequal bonding between cation and anion pairs in Cu Ag InSeTe solid solutions, which can be effectively used to disturb phonon transport, has been proposed. The unequal bonding, which is represented by the difference of bond lengths Δ, Δ = - and anion position displacement from its equilibrium position Δ = - 0.
View Article and Find Full Text PDFIn this work the chalcopyrite CuInSeTe (x = 0~0.5) with space group through isoelectronic substitution of Te for Se have been prepared, and the crystal structure dilation has been observed with increasing Te content. This substitution allows the anion position displacement ∆u = 0.
View Article and Find Full Text PDFAlthough binary In-Se based alloys have in recent years gained interest as thermoelectric (TE) candidates, little attention has been paid to In6Se7-based compounds. Substituting Pb in In6Se7, preference for Pb(2+) in the In(+) site has been observed, allowing Fermi level (Fr) shift toward the conduction band, where the localized state conduction becomes dominant. Consequently, the Hall carrier concentration (nH) has been significantly enhanced with the highest nH value being about 2-3 orders of magnitude higher than that of the Pb-free sample.
View Article and Find Full Text PDFI-III-VI2 chalcopyrites have unique inherent crystal structure defects, and hence are potential candidates for thermoelectric materials. Here, we identified mixed polyanionic/polycationic site defects (ZnIn(-), VCu(-), InCu(2+) and/or ZnCu(+)) upon Zn substitution for either Cu or In or both in CuInTe2, with the ZnIn(-) species originating from the preference of Zn for the cation 4b site. Because of the mutual reactions among these charged defects, Zn substitution in CuInTe2 alters the basic conducting mechanism, and simultaneously changes the lattice structure.
View Article and Find Full Text PDF