Transition metal oxide semiconductors have great potential for use in H sensors, but in recent years, the strange phenomena about gas-sensitive performance associated with their special properties have been more widely discussed in research. In some cases, the resistance of transition metal oxide gas sensors will emerge with some changes contrary to their intrinsic semiconductor characteristics, especially in gas sensor research of WO. Based on the hydrothermal synthesis of WO, our work focuses on the abnormal change of tungsten oxide resistance to different gases at low temperature (80-200 °C) and high temperature (above 200 °C).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Oxygen vacancies (V) in metal oxide semiconductors play an important role in improving gas-sensing performance of chemiresistive gas sensors. Nonetheless, there is still a lack of clear understanding of the inherent mechanism of the influence of oxygen vacancies on gas sensing due to generally focusing on the concentration of V. Herein, oxygen vacancies were rationally modulated in WO nanoflower structures via an annealing process, resulting in a transformation of V from neutral (V) to a doubly ionized (V) state.
View Article and Find Full Text PDFIntroduction: Although flavonoid compounds exhibit various pharmacological activities, their clinical applications are restricted by low oral bioavailability owing to their poor solubility. Nanocrystals (NCs) represent an excellent strategy for enhancing the oral bioavailability of flavonoids. Hydroxyethyl starch (HES), a biomaterial compound used as a plasma expander, could be an ideal stabilizer material for preparing flavonoid NCs.
View Article and Find Full Text PDFBackground: Tinnitus diagnosis poses a challenge in otolaryngology owing to an extremely complex pathogenesis, lack of effective objectification methods, and factor-affected diagnosis. There is currently a lack of explainable auxiliary diagnostic tools for tinnitus in clinical practice.
Objective: This study aims to develop a diagnostic model using an explainable artificial intelligence (AI) method to address the issue of low accuracy in tinnitus diagnosis.
J Colloid Interface Sci
October 2021
Hydrogen can be regarded as an ideal type of secondary energy considering its potential for achieving renewable and sustainable development due to water being its sole combustion product and its possible production by solar energy-based water electrolysis. Monitoring the presence and concentration of hydrogen during production, transportation, and application requires a hydrogen gas sensor with high response, high selectivity, and fast response and recovery times. In an attempt to meet these requirements, NiO and PdO are used in the co-doping of InO nanotubes by subsequent electrospinning and impregnation under UV irradiation.
View Article and Find Full Text PDFBackground: Pancreatic cancer is a fatal disease with a very poor prognosis due to its characteristic insidious symptoms, early metastasis, and chemoresistance. Circular RNAs (circRNAs) are involved in the development of pancreatic cancer.
Aim: Hence, the aim of this study is to elucidate the mechanism of circRNA_000864 in regulating BTG2 expression in pancreatic cancer by binding to miR-361-3p.
Polymer-based micromolding has been proposed as an alternative to SU-8 micromolding for microfluidic chip fabrication. However, surface defects such as milling marks may result in rough microchannels and micromolds, limiting microfluidic device performance. Therefore, we use chemical and mechanical methods for polishing polymer microchannels and micromolds.
View Article and Find Full Text PDF