Publications by authors named "Zhengke Li"

Organic electrochemical transistor (OECT)-based inverter introduces new prospects for energy-efficient brain-inspired artificial intelligence devices. Here, we report single-component OECT-based inverters by incorporating ambipolar p(gDPP-V). Notably, p(gDPP-V) shows state-of-the-art ambipolar OECT performances in both conventional (p/n-type mode transconductance of 29/25 S cm) and vertical (transconductance of 297.

View Article and Find Full Text PDF

Chlorosis dormancy resulting from nitrogen starvation and its resuscitation upon available nitrogen contributes greatly to the fitness of cyanobacterial population under nitrogen-fluctuating environments. The reinstallation of the photosynthetic machinery is a key process for resuscitation from a chlorotic dormant state; however, the underlying regulatory mechanism is still elusive. Here, we reported that red light is essential for re-greening chlorotic Synechocystis sp.

View Article and Find Full Text PDF

With the accumulation of plastic waste in the environment, the toxicity of micro- and nano-plastics (MNPs) to microalgae has attracted increasing attention. However, the underlying toxic mechanisms of MNPs remain to be elucidated. In this study, we synthesized micro- and nano-scale of polystyrene MNPs (PS MNPs) to investigate their toxicity and toxic mechanisms in Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Salt lakes are significant components of global inland waters. Salt lake (SL) water can provide precious mineral resource for microbial growth. The prospect of utilizing diluted SL water for cultivation of a terrestrial oil-producing microalga sp.

View Article and Find Full Text PDF

Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown.

View Article and Find Full Text PDF

Nanomaterials (NMs) are becoming more commonly used in microalgal biotechnology to empower the production of algal biomass and valuable metabolites, such as lipids, proteins, and exopolysaccharides. It provides an effective and promising supplement to the existing algal biotechnology. In this review, the potential for NMs to enhance microalgal growth by improving photosynthetic utilization efficiency and removing reactive oxygen species is first summarized.

View Article and Find Full Text PDF

Marine planktonic diatoms are among the most important contributors to phytoplankton blooms and marine net primary production. Their ecological success has been attributed to their ability to rapidly respond to changing environmental conditions. Here, we report common molecular mechanisms used by the model marine diatom Thalassiosira pseudonana to respond to 10 diverse environmental stressors using RNA-Seq analysis.

View Article and Find Full Text PDF

Carbon dots (CDs) have attracted increasing attention for their ability to artificially improve photosynthesis. Microalgal bioproducts have emerged as promising sources of sustainable nutrition and energy. However, the gene regulation mechanism of CDs on microalgae remains unexplored.

View Article and Find Full Text PDF

Functionalized polymeric mixed ionic-electronic conductors (PMIECs) are highly desired for the development of electrochemical applications, yet are hindered by the limited conventional synthesis techniques. Here, we propose a "graft-onto-polymer" synthesis strategy by post-polymerization functionalization (GOP-PPF) to prepare a family of PMIECs sharing the same backbone while functionalized with varying ethylene glycol (EG) compositions (two, four, and six EG repeating units). Unlike the typical procedure, GOP-PPF uses a nucleophilic aromatic substitution reaction for the facile and versatile attachment of functional units to a pre-synthesized conjugated-polymer precursor.

View Article and Find Full Text PDF

Cadmium (Cd) pollution is a global environmental problem. It is of great significance to find a kind of pasture that can grow normally in a cadmium environment, especially in the Tibetan Plateau. We studied the fruit germination and fruit growth of S.

View Article and Find Full Text PDF

Tailoring organic semiconductors to facilitate mixed conduction of ionic and electronic charges when interfaced with an aqueous media has spurred many recent advances in organic bioelectronics. The field is still restricted, however, by very few n-type (electron-transporting) organic semiconductors with adequate performance metrics. Here, a new electron-deficient, fused polycyclic aromatic system, TNR, is reported with excellent n-type mixed conduction properties including a µC* figure-of-merit value exceeding 30 F cm V s for the best performing derivative.

View Article and Find Full Text PDF

Unlabelled: The human papillomavirus (HPV) genome is integrated into host DNA in most HPV-positive cancers, but the consequences for chromosomal integrity are unknown. Continuous long-read sequencing of oropharyngeal cancers and cancer cell lines identified a previously undescribed form of structural variation, "heterocateny," characterized by diverse, interrelated, and repetitive patterns of concatemerized virus and host DNA segments within a cancer. Unique breakpoints shared across structural variants facilitated stepwise reconstruction of their evolution from a common molecular ancestor.

View Article and Find Full Text PDF

The development of high-performance n-type semiconducting polymers remains a significant challenge. Reported here is the construction of a coplanar backbone intramolecular hydrogen bonds to dramatically enhance the performance of n-type polymeric mixed conductors operating in aqueous electrolyte. Specifically, glycolated naphthalene tetracarboxylicdiimide (gNDI) couples with vinylene and thiophene to give gNDI-V and gNDI-T, respectively.

View Article and Find Full Text PDF

In the development of high-performance organic thermoelectric devices, n-type materials, especially with small molecule semiconductors, lags far behind p-type materials. In this paper, three small molecules are synthesized based on electron-deficient naphthalene bis-isatin building blocks bearing different alkyl chains with the terminal functionalized with 3-ethylrhodanine unit and studied their aggregation and doping mechanism in detail. It is found that crystallinity plays an essential role in tuning the doping behavior of small molecules.

View Article and Find Full Text PDF

The primary challenge for n-type small-molecule organic electrochemical transistors (OECTs) is to improve their electron mobilities and thus the key figure of merit μC*. Nevertheless, few reports in OECTs have specially proposed to address this issue. Herein, we report a 10-ring-fused polycyclic π-system consisting of the core of naphthalene bis-isatin dimer and the terminal moieties of rhodanine, which features intramolecular noncovalent interactions, high π-delocalization and strong electron-deficient characteristics.

View Article and Find Full Text PDF

Tuning the film morphology and aggregated structure is a vital means to improve the performance of the mixed ionic-electronic conductors in organic electrochemical transistors (OECTs). Herein, three fluorinated alcohols (FAs), including 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and perfluoro--butanol (PFTB), were employed as the alternative solvents for engineering the n-type small-molecule active layer . Remarkedly, an impressive μ* of 5.

View Article and Find Full Text PDF

Small-molecule semiconductors used as the channel of organic electrochemical transistors (OECTs) have been rarely reported despite their inherent advantages of well-defined molecular weight, convenient scale-up synthesis, and good performance reproducibility. Herein, three small molecules based on perylene diimides are readily prepared for n-type OECTs. The final molecules show preferred energy levels, tunable backbone conformation, and high film crystallinity, rendering them good n-type dopability, favorable volumetric capacities, and substantial electron mobilities.

View Article and Find Full Text PDF

A few groups of cyanobacteria have been characterized as having far-red light photoacclimation (FaRLiP) that results from chlorophyll f (Chl f) production. In this study, using a polyphasic approach, we taxonomically transferred the Cf. Leptolyngbya sp.

View Article and Find Full Text PDF
Article Synopsis
  • Housekeeping genes (HKGs) are important for cell maintenance and show low variation across different tissues and conditions, but in the marine diatom Thalassiosira pseudonana, 1505 HKGs were identified through RNA-seq analysis of 232 samples under various conditions.
  • The study found that less than 18% of HKGs in T. pseudonana have counterparts in other eukaryotes, and interestingly, these HKGs are typically longer due to elongated introns compared to non-HKGs.
  • The researchers suggest that the unique features of T. pseudonana's HKGs may be a result of specific evolutionary pressures that demand high expression levels with low variance, challenging the idea
View Article and Find Full Text PDF

Elemental contents change with shifts in macromolecular composition of marine phytoplankton. Recent studies focus on the responses of elemental contents of coccolithophores, a major calcifying phytoplankton group, to changing carbonate chemistry, caused by the dissolution of anthropogenically derived CO into the surface ocean. However, the effects of changing carbonate chemistry on biomacromolecules, such as protein and carbohydrate of coccolithophores, are less documented.

View Article and Find Full Text PDF

species are Gram-positive, aerobic, spore-forming bacteria that are widely spread in soil, dust, and water. One strain, sp. strain WL1, was isolated from the surface of the cyanobacterium Nostoc flagelliforme in Yinchuan, Ningxia, China.

View Article and Find Full Text PDF

Great attention is being increasingly paid to photothermal conversion in the near-infrared (NIR)-II window (1000-1350 nm), where deeper tissue penetration is favored. To date, only a limited number of organic photothermal polymers and relevant theory have been exploited to direct the molecular design of polymers with highly efficient photothermal conversion, specifically in the NIR-II window. This work proposes a fused backbone structure locked an intramolecular hydrogen bonding interaction and double bond, which favors molecular planarity and rigidity in the ground state and molecular flexibility in the excited state.

View Article and Find Full Text PDF

The hallmark of HIV/AIDS is a gradual depletion of CD4 T cells. Despite effective control by antiretroviral therapy (ART), a significant subgroup of people living with HIV (PLHIV) fails to achieve complete immune reconstitution, deemed as immune non-responders (INRs). The mechanisms underlying incomplete CD4 T cell recovery in PLHIV remain unclear.

View Article and Find Full Text PDF

The development of light-electricity conversion in nanomaterials has drawn intensive attention to the topic of achieving high efficiency and environmentally adaptive photoelectric technologies. Besides traditional improving methods, we noted that low-temperature cooling possesses advantages in applicability, stability and nondamaging characteristics. Because of the temperature-related physical properties of nanoscale materials, the working mechanism of cooling originates from intrinsic characteristics, such as crystal structure, carrier motion and carrier or trap density.

View Article and Find Full Text PDF