Alpha Psychiatry
June 2024
Objective: To analyze the risk factors of major depressive disorder (MDD) after spinal cord injury (SCI).
Methods: Patients with SCI in our hospital from February 2020 to February 2023 were selected as the study objects. According to the Hamilton Depression Scale (HAMD) score, patients with 36~75 points were included in the major depression group, and 0~35 points were included in the non-major depression group.
BMC Musculoskelet Disord
April 2024
Background: Cases of bilateral hip fractures are rare, and even more so are cases of bilateral intertrochanteric fractures. Common causes include trauma, internal diseases, and primary or secondary bone diseases. We report a case of bilateral intertrochanteric fractures in an elderly patient following a severe car accident, a scenario not extensively reported in existing literature.
View Article and Find Full Text PDFSpectrum resources are becoming increasingly crowded, and the isolation interval between different systems is getting smaller and smaller. This puts forward higher requirements for the duplexer. The duplexer is an important part of the radio frequency front end, and the isolation requirement is becoming higher.
View Article and Find Full Text PDFReversible proton ceramic electrochemical cell (R-PCEC) is regarded as the most promising energy conversion device, which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem of large-scale energy storage. However, the development of robust electrodes with high catalytic activity is the main bottleneck for the commercialization of R-PCECs. Here, a novel type of high-entropy perovskite oxide consisting of six equimolar metals in the A-site, PrLaNdBaSrCaCoO (PLNBSCC), is reported as a high-performance bifunctional air electrode for R-PCEC.
View Article and Find Full Text PDFCarboxymethyl cellulose (CMC) is a cellulose derivative that can be obtained from wood, bamboo, rattan, straw, and other cellulosic materials. CMC can be used to produce biofilms for many purposes, but the properties of these resulting films make them unsuitable for some applications. The effects of three kinds of plant fiber addition on CMC film properties was investigated using CMC derived from eucalyptus bark cellulose.
View Article and Find Full Text PDFBacterial cellulose (BC) is naturally degradable, highly biocompatible, hydrophilic, and essentially non-toxic, making it potentially useful as a base for creating more sophisticated bio-based materials. BC is similar to plant-derived cellulose in terms of chemical composition and structure but has a number of important differences in microstructure that could provide some unique opportunities for use as a scaffold for other functions. In this study, bacterial cellulose was alkylated and then esterified to produce a carboxymethyl bacterial cellulose (CMBC) that was then used to produce six different composite films with potential antibacterial properties.
View Article and Find Full Text PDFThis study aims to improve the thermal stability and mechanical properties of carboxymethyl bacterial cellulose (CMBC) composite films. Experiments were conducted by preparing bacterial cellulose (BC) into CMBC, then parametrically mixing sodium alginate/starch/xanthan gum/gelatin and glycerin/sorbitol/PEG 400/PEG 6000 with CMBC to form the film. Scanning electron microscopy, X-ray diffractometry, infrared spectroscopy, mechanical tests, and thermogravimetric analysis showed that the composite films had better mechanical properties and thermal stability with the addition of 1.
View Article and Find Full Text PDFPolymers (Basel)
December 2021
Sodium carboxymethyl cellulose (CMC) can be derived from a variety of cellulosic materials and is widely used in petroleum mining, construction, paper making, and packaging. CMCs can be derived from many sources with the final properties reflecting the characteristics of the original lignocellulosic matrix as well as the subsequent separation steps that affect the degree of carboxy methyl substitution on the cellulose hydroxyls. While a large percentage of CMCs is derived from wood pulp, many other plant sources may produce more attractive properties for specific applications.
View Article and Find Full Text PDFThere are vast reserves of foliage in nature, which is an inexhaustible precious resource. In this study, the chemical components of five foliage types (pine needles, black locust tree leaves, bamboo leaves, elm leaves and poplar leaves) were analyzed, including cellulose content, hemicellulose content, and lignin content. The bio-enzymatic method was then used to prepare cellulose nanoparticles (CNPs) from these five kinds of leaves, and the prepared CNPs were analyzed using TEM, FTIR, FESEM, and XRD.
View Article and Find Full Text PDFIn this paper we demonstrate a novel acoustic wave pressure sensor, based on an aluminum nitride (AlN) piezoelectric thin film. It contains an integrated vacuum cavity, which is micro-fabricated using a cavity silicon-on-insulator (SOI) wafer. This sensor can directly measure the absolute pressure without the help of an external package, and the vacuum cavity gives the sensor a very accurate reference pressure.
View Article and Find Full Text PDFPerformance of hardened oil well cement (OWC) is largely determined by the rheological properties of the cement slurries. This work was carried out to investigate the effect of water- to-cement ratio (WCR) and cellulose nanoparticles (CNPs), including cellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs), on rheology performance of OWC-based slurries using a Couette rotational viscometer coupled with rheological models. The yield stress and viscosity of neat OWC slurries had a decreasing trend with the increase of WCRs.
View Article and Find Full Text PDF