Joubert syndrome (JS) is an infrequent congenital neurodevelopmental ciliopathy, typically identified in children around the average age of 33 months. This disorder is characterized by developmental delay, cognitive impairment, and infantile hypotonia that may evolve into ataxia. Mutations in results in Joubert syndrome with a variety of phenotypes.
View Article and Find Full Text PDFThe performance of PbSe colloidal quantum dot (CQD) based photodiodes with responses beyond 2000 nm was far from satisfactory and has rarely been reported. The difficulty in obtaining chemically stable large-sized PbSe CQDs was the main reason. In this work, chloride ions in weak acidic solvent were introduced to in-situ etch out the Se atoms on the surfaces of PbSe CQDs and formed a -Pb-Cl protection layer.
View Article and Find Full Text PDFAs potential low-cost alternatives of traditional bulk HgCdTe crystals, HgTe colloidal quantum dots (CQDs) synthesized through reactions between HgCl and trioctylphosphine-telluride in hot oleylamine have shown promising performances in mid-wave infrared photodetectors. Tetrapodic or tetrahedral HgTe CQDs have been obtained by tuning the reaction conditions such as temperature, reaction time, concentrations, and ratios of the two precursors. However, the principles governing the growth dynamics and the mechanism behind the transitions between tetrapodic and tetrahedral HgTe CQDs have not been sufficiently understood.
View Article and Find Full Text PDFLow-toxicity InP-based quantum dots (QDs) exhibit potential for replacing Cd/Pb-containing QDs in the visible and near-infrared regions. Despite advancements, further improvement relies on synthesizing homogeneous InP QDs to achieve a high color purity. In a commonly employed two-step "seed-mediated" synthetic approach, we demonstrate the high sensitivity of InP seed sizes and size distribution to the quantities of trioctylphosphine (TOP) and tris(trimethylsilyl)phosphine [(TMS)P], attributed to the process of "self-focusing of size distribution" and enhanced reactivity of In-oleate through coordination with TOP.
View Article and Find Full Text PDFCorrection for 'Elaborating the interplay between the detecting unit and emitting unit in infrared quantum dot up-conversion photodetectors' by Qiulei Xu , , 2023, , 8197-8203, https://doi.org/10.1039/D3NR01237A.
View Article and Find Full Text PDFPbS quantum dot light-emitting diodes (QLEDs) emitting around 1550 nm promise important applications in optical communications. However, due to insufficient suppression of surface traps for large-size PbS quantum dots (QDs), their performance under large driving current density was not satisfactory. In this work, octanethiol surfactant was added into a PbS QD solution and adsorbed onto the dot surface.
View Article and Find Full Text PDFThe quantum dot up-conversion device combines an infrared photodetector (PD) and a visible quantum-dot light-emitting diode (QLED) to directly convert infrared targets to visible images. However, large efficiency loss is usually induced by the integration of the detecting unit and the emitting unit. One of the important reasons is the performances of the PD and QLED units restraining each other.
View Article and Find Full Text PDFThe development of in situ growth methods for the fabrication of high-quality perovskite single-crystal thin films (SCTFs) directly on hole-transport layers (HTLs) to boost the performance of optoelectronic devices is critically important. However, the fabrication of large-area high-quality SCTFs with thin thickness still remains a significant challenge due to the elusive growth mechanism of this process. In this work, the influence of three key factors on in situ growth of high-quality large-size MAPbBr SCTFs on HTLs is investigated.
View Article and Find Full Text PDFLarge quantities of Triassic solid asphaltite were discovered in the Guangyuan area, northwest Sichuan. The asphaltite is formed in layers with a vertical thickness between 0.3 and 2.
View Article and Find Full Text PDFThis report demonstrates high-performance infrared phototransistors that use a broad-band absorbing organic bulk heterojunction (BHJ) layer responsive from the visible to the shortwave infrared, from 500 to 1400 nm. The device structure is based on a bilayer transistor channel that decouples charge photogeneration and transport, enabling independent optimization of each process. The organic BHJ layer is improved by incorporating camphor, a highly polarizable additive that increases carrier lifetime.
View Article and Find Full Text PDFCervical cancer is the second most prevalent malignant tumor in women worldwide. Failure of successful treatment is most prevalent in patients with the metastatic disease and the chemotherapy refractory disease. Tumor necrosis factor α-induced protein 8 (TNFAIP8) serves as an anti-apoptotic and pro-oncogenic protein, and is associated with cancer progression and poor prognosis in a number of different cancer types.
View Article and Find Full Text PDFInfrared photodetectors are essential to many applications, including surveillance, communications, process monitoring, and biological imaging. The short-wave infrared (SWIR) spectral region (λ = 1-3 μm) is particularly powerful for health monitoring and medical diagnostics because biological tissues show low absorbance and minimal SWIR autofluorescence, enabling greater penetration depth and improved resolution in comparison with visible light. However, current SWIR photodetection technologies are largely based on epitaxially grown inorganic semiconductors, which are costly, require complex processing, and impose cooling requirements incompatible with wearable electronics.
View Article and Find Full Text PDFWe report our effort to unravel the origin of efficient operation of nonfullerene organic solar cells (OSCs), based on a poly[4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)](PTB7-Th):3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno [1,2-b:5,6-b']dithiophene (ITIC) blend system. The effects of buildup of space charges, charge extraction, and bimolecular recombination processes on the performance and the stability of PTB7-Th:ITIC-based regular and reverse configuration OSCs are analyzed. It is found that the high-performing inverted PTB7-Th:ITIC OSCs benefit from the combined effects of (1) suppression of bimolecular recombination enabled by an augmented effective internal electric field and (2) improvement of charge extraction by avoiding the holes passing through ITIC-rich region, which would otherwise occur in a regular configuration cell.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2017
Bulk heterojunction photodiodes are fabricated using a new donor-acceptor polymer with a near-infrared absorption edge at 1.2 μm, achieving a detectivity up to 10 Jones at a wavelength of 1 μm and an excellent linear dynamic range of 86 dB. The photodiode detectivity is maximized by operating at zero bias to suppress dark current, while a thin 175 nm active layer is used to facilitate charge collection without reverse bias.
View Article and Find Full Text PDFOrganic solar cells (OSCs) with inverted structure usually exhibit higher power conversion efficiency (PCE) and are more stable than corresponding devices with regular configuration. Indium tin oxide (ITO) surface is often modified with solution-processed low work function metal oxides, such as ZnO, serving as the transparent cathode. However, the defect-induced subgap states in the ZnO interlayer hamper the efficient charge collection and the performance reproducibility of the OSCs.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) NS4B protein is known to induce the formation of a membranous web that is thought to be the site of viral RNA replication. However, the exact functions of NS4B remain poorly characterized. In this study, we found that NS4B induced apoptosis in 293T cells and Huh7 cells, as confirmed by Hoechst staining, DNA fragmentation, and annexin V/PI assays.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2011
Interleukin-18 (IL-18) has been reported to inhibit hepatitis B virus (HBV) replication in the liver of HBV transgenic mice; however, the molecular mechanism of its antiviral effect has not been fully understood. In the present study, it was shown that IL-18 and its receptors (IL-18R) were constitutively expressed in hepatoma cell lines HepG2 and HepG2.2.
View Article and Find Full Text PDFDevelopment of an effective vaccine may be the key in the control of hepatitis C virus (HCV) infection. Recent studies have shown that HCV envelope proteins can induce broadly neutralizing antibodies against conserved domain for HCV binding to the cellular receptors. So HCV envelope proteins are considered as the major HCV vaccine candidate.
View Article and Find Full Text PDFThis article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.
View Article and Find Full Text PDFChronic hepatitis C virus (HCV) infection often leads to liver cancer. NS2/3 protease is the first of two virally encoded proteases required for HCV polyprotein processing. In this report, we investigated the function of NS2/3 protease on HCV replication and translation.
View Article and Find Full Text PDFChronic hepatitis C virus (HCV) infection often leads to liver cancer. The HCV NS2 protein is a hydrophobic transmembrane protein that associates with several cellular proteins in mammalian cells. In this report, we investigated the function of NS2 protein on HCV replication and translation by using a transient cell-based expression system.
View Article and Find Full Text PDFZhonghua Wai Ke Za Zhi
February 2008
Objective: To evaluate the synthetic typing and the treatment strategy for atlantoaxial dislocation.
Methods: The synthetic typing of atlantoaxial dislocation was worked out on the base of pathogenesis typing, Fielding imaging typing, and clinical typing, named PIR typing system (Pathogenesis, Imaging, and Reduction). Ninety-three patients with atlantoaxial dislocation were treated according to this typing system.
Biochem Biophys Res Commun
May 2008
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is responsible for SARS infection. Nucleocapsid (N) protein of SARS-CoV encapsidates the viral RNA and plays an important role in virus particle assembly and release. In this study, the N protein of SARS-CoV was found to associate with B23, a phosphoprotein in nucleolus, in vitro and in vivo.
View Article and Find Full Text PDFSince the first discovery of Torque teno virus (TTV) in 1997, many researchers focused on its epidemiology and transcriptional regulation, but the function of TTV-encoded proteins remained unknown. The function of the TTV open reading frame (ORF) in the nuclear factor kappaB (NF-kappaB) pathway has not yet been established. In this study, we found for the first time that the TTV ORF2 protein could suppress NF-kappaB activity in a dose-dependent manner in the canonical NF-kappaB pathway.
View Article and Find Full Text PDF