Lysine acetylation is a reversible post-translational modification (PTM) involved in multiple physiological functions. Recent studies have demonstrated the involvement of protein acetylation in modulating the biology of Schwann cells (SCs) and regeneration of the peripheral nervous system (PNS). However, the mechanisms underlying these processes remain partially understood.
View Article and Find Full Text PDFBMC Mol Cell Biol
April 2021
Background: Schwann cells (SCs) play a crucial role in the repair of peripheral nerves. This is due to their ability to proliferate, migrate, and provide trophic support to axon regrowth. During peripheral nerve injury, SCs de-differentiate and reprogram to gain the ability to repair nerves.
View Article and Find Full Text PDFSchwann cells (SCs) are myelin-forming glial cells of the peripheral nervous system. Recent studies suggested that SCs comprise two phenotypes: sensory SCs and motor SCs, which are associated with the modality-specific promotion of sensory and motor axon growth during peripheral neuronal regeneration. However, the molecular basis of the two phenotypic SCs is unclear.
View Article and Find Full Text PDFBackground: Activated microglia play a critical role in regulating neuroinflammatory responses in central nervous system. Previous studies have shown that Achyranthes bidentata polypeptide k's (ABPPk's) neuroprotective effects are partly due to its anti-inflammatory effect, but the mechanism remains unknown. This study is aimed to investigate the anti-inflammatory effect of ABPPk on lipopolysaccharide (LPS)-activated neuroinflammation in BV2 microglia.
View Article and Find Full Text PDF