Bacterial infection is one of the most serious clinical complications, with life-threatening outcomes. Nature-inspired biomaterials offer appealing microscale and nanoscale architectures that are often hard to fabricate by traditional technologies. Inspired by the light-harvesting nature, we engineered sulfuric acid-treated sunflower sporopollenin exine-derived microcapsules (HSECs) to capture light and bacteria for antimicrobial photothermal therapy.
View Article and Find Full Text PDFDNA nanostructures as scaffolds for drug delivery, biosensing, and bioimaging are hindered by its vulnerability in physiological settings, less favorable of incorporating arbitrary guest molecules and other desirable functionalities. Noncanonical self-assembly of DNA nanostructures with small molecules in an alternative system is an attractive strategy to expand their applications in multidisciplinary fields and is rarely explored. This work reports a nitrogen-enriched carbon dots (NCDs)-mediated DNA nanostructure self-assembly strategy.
View Article and Find Full Text PDFUnlabelled: Microvascular barrier dysfunction is the central pathophysiological feature of acute lung injury (ALI). RAB26 is a newly identified small GTPase involved in the regulation of endothelial cell (EC) permeability. However, the mechanism behind this protection has not been clearly elucidated.
View Article and Find Full Text PDFHigh-altitude deacclimatization syndrome (HADAS) is emerging as a severe public health issue that threatens the quality of life of individuals who return to lower altitude from high altitude. In this study, we measured serum levels of SOD, MDA, IL-17A, IL-10, TNF-α, and HADAS score in HADAS subjects at baseline and 50th and 100th days and to evaluate the relationship between interleukins, including IL-17A, and HADAS. Our data showed that and the serum IL-17A levels and HADAS score decreased over time in the HADAS group, and serum IL-17A levels were significantly higher in the HADAS group at baseline and 50th day compared with controls (p < 0.
View Article and Find Full Text PDFThe small GTPase Rab5 has been well defined to control the vesicle-mediated plasma membrane protein transport to the endosomal compartment. However, its function in the internalization of vascular endothelial (VE)-cadherin, an important component of adherens junctions, and as a result regulating the endothelial cell polarity and barrier function remain unknown. Here, we demonstrated that lipopolysaccharide (LPS) simulation markedly enhanced the activation and expression of Rab5 in human pulmonary microvascular endothelial cells (HPMECs), which is accompanied by VE-cadherin internalization.
View Article and Find Full Text PDFThe proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a key pathophysiological component of vascular remodeling in pulmonary arterial hypertension (PAH), an intractable disease, for which pharmacotherapy is limited and only slight improvement in survival outcomes have achieved over the past few decades. RNA interference provides a highly promising strategy to the treatment of this chronic lung disease, while efficient delivery of small interfering RNA (siRNA) remains a key challenge for the development of clinically acceptable siRNA therapeutics. With the aim to construct useful nanomedicines, the mammalian target of rapamycin (mTOR) siRNA was loaded into hybrid nanoparticles based on low molecular weight (Mw) polyethylenimine (PEI) and a pH-responsive cyclodextrin material (Ac-aCD) or poly(lactic-co-glycolic acid) (PLGA).
View Article and Find Full Text PDFThe syndrome of high-altitude de-acclimatization commonly takes place after long-term exposure to high altitudes upon return to low altitudes. The syndrome severely affects the returnee's quality of life. However, little attention has been paid to careful characterization of the syndrome and their underlying mechanisms.
View Article and Find Full Text PDFThe absence of safe, efficient, cost-effective, and easily scalable delivery platforms is one of the most significant hurdles and critical issues that limit the bench to bedside translation of oligonucleotides-based therapeutics. Acid-labile materials are of special interest in developing nonviral vectors due to their capability of intracellularly delivering therapeutic payload. In this study, a nanovector was designed by integrating a pH-responsive cyclodextrin material and low molecular weight polyethylenimine (PEI).
View Article and Find Full Text PDF