The clinic application of doxorubicin (DOX) is severely limited by its severe cardiotoxicity. Tripartite motif-containing protein 16 (TRIM16) has E3 ubiquitin ligase activity and is upregulated in cardiomyocytes under pathological stress, yet its role in DOX-induced cardiotoxicity remains elusive. This study aims to investigate the role and mechanism of TRIM16 in DOX cardiotoxicity.
View Article and Find Full Text PDFAlternate-day fasting (ADF) has been reported to reduce body weight, neuroinflammation, and oxidative stress damage. However, it is not known whether ADF affects obesity-induced anxiety-like behavior. Here, male C57BL/6 mice were given an alternate fasting and high-fat diet (HFD) or standard chow diet (SD) every other day for 16 or 5 weeks.
View Article and Find Full Text PDFRecent studies have shown that FMS-like receptor tyrosine kinase 3 (Flt3) has a beneficial effect on cardiac maladaptive remodeling. However, the role and mechanism of Flt3 in mitochondrial dynamic imbalance under cardiac stress remains poorly understood. This study aims to investigate how Flt3 regulates p53-mediated optic atrophy 1 (OPA1) processing and mitochondrial fragmentation to improve cardiac remodeling.
View Article and Find Full Text PDFFMS-like receptor tyrosine kinase 3 (Flt3) expression was reported to increase in the heart in response to pathological stress, but the role of Flt3 activation and its underlying mechanisms remain poorly elucidated. This study was designed to investigate the role of Flt3 activation in sympathetic hyperactivity-induced cardiac hypertrophy and its mechanisms through autophagy and mitochondrial dynamics. In vivo, cardiac hypertrophy was established by subcutaneous injection of isoprenaline (6 mg/kg·day) in C57BL/6 mice for 7 consecutive days.
View Article and Find Full Text PDFSorafenib (Sor), a novel multi-target anticancer drug also induces severe toxicity in heart, while the mechanism of its cardiotoxicity remains to be fully elucidated. Dysregulation of autophagy and mitochondrial dynamics imbalance have been implicated in cardiomyocyte death. The aim of this study is to test the hypothesis that Sor disrupts autophagy and mitochondrial dynamics, thereby aggravating Sor-induced oxidative stress damage to cardiomyocytes.
View Article and Find Full Text PDFAntiferroelectric (AFE) materials, in which alternating dipole moments cancel out to a zero net macroscopic polarization, can be used for high-density energy storage and memory applications. The AFE phase can exist in bulk CuInPSe, CuBiPS, and a few other transition-metal thiophosphates below 200 K. The required low temperature poses challenges for practical applications.
View Article and Find Full Text PDFRecent studies reported that miR-128 was differentially expressed in cardiomyocytes in response to pathologic stress. However, its function and mechanism remain to be fully elucidated. The aim of the present study was to investigate the role of miR-128 in chronic angiotensin II (Ang II) infusion-induced cardiac remodeling and its underlying mechanism.
View Article and Find Full Text PDFNeointimal hyperplasia is the major cause of carotid stenosis after vascular injury, which restricts the long-term efficacy of endovascular treatment and endarterectomy in preventing stenosis. Ginsenoside Re (Re) is a major active ingredient of ginseng having multifaceted pharmacological effects on the cardiovascular system, and is a potential treatment for restenosis. In this study, we demonstrated that Re treatment significantly inhibited vascular injury-induced neointimal thickening, reduced the intimal area and intima/media (I/M) ratio, increased the lumen area, and inhibited pro-inflammatory cytokines.
View Article and Find Full Text PDFHibernation allows animals to enter an energy conserving state to survive severe drops in external temperatures and a shortage of food. It has been observed that the hearts of mammalian hibernators exhibit intrinsic protection against ischemia-reperfusion (I/R) injury and cardiac arrhythmias in the winter whether they are hibernating or not. However, the molecular and ionic mechanisms for cardioprotection in mammalian hibernators remain elusive.
View Article and Find Full Text PDFLong-term high-fat-diet (HFD)-induced obesity is associated with many comorbidities, such as cognitive impairment and anxiety, which are increasing public health burdens that have gained prevalence in adolescents. Although low-dose alcohol could attenuate the risk of cardiovascular disease, its mechanism on HFD-induced anxiety-related behavior remains not clear. The mice were divided into 4 groups, Control (Con), Alcohol (Alc), HFD and HFD + Alc groups.
View Article and Find Full Text PDFAim: FMS-like receptor tyrosine kinase 3 (Flt3) has been reported to be increased in cardiomyocytes responding to ischaemic stress. This study was to determine whether Flt3 activation could ameliorate pressure overload-induced heart hypertrophy and fibrosis, and to elucidate the mechanisms of action.
Methods: In vivo cardiac hypertrophy and remodelling experiments were conducted by infusing angiotensin II (Ang II) chronically in male C57BL/6 mice.
The engineering coordination environment offers great opportunity in performance tunability of isolated metal single-atom catalysts. For the most popular metal-N (MN) structure, the replacement of N atoms by some other atoms with relatively weak electronegativity has been regarded as a promising strategy for optimizing the coordination environment of an active metal center and promoting its catalytic performance, which is still a challenge. Herein, we proposed a new synthetic strategy of an in situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks for designing atomic Co-PN interfacial structure, where a cobalt single atom is costabilized by one P atom and three N atoms (denoted as Co-SA/P-in situ).
View Article and Find Full Text PDFRecent studies showed that homocysteine (Hcy) levels were obviously elevated in patients with anxiety, furthermore, oxidative stress and inflammation were closely linked with Hcy-related damage. Despite alcohol exposure has differential effects on different forms of anxiety, the role of alcohol on anxiety-related behavior induced by high Hcy levels is still not entirely clear. The present study investigated the protective potential of low-dose alcohol against homocysteine-induced anxiety-related behavior and explored the possible underlying mechanisms.
View Article and Find Full Text PDFSorafenib, a multi-kinase inhibitor, is recommended as a new standard therapy for advanced hepatocellular carcinoma (HCC); however, it also exhibits severe cardiotoxicity and the toxicity mechanisms are not completely elucidated. Recent studies suggested that sorafenib-enhanced ROS may partially contribute to its anti-HCC effect, which implies that redox mechanism might also be involved in sorafenib's cardiotoxicity. In this study, we aimed to investigate if sorafenib is able to induce oxidative stress and how this may impair cellular functions in cardiomyocyte, ultimately accounting for its cardiotoxicity.
View Article and Find Full Text PDFStore-operated calcium entry (SOCE) is an important physiological phenomenon that extensively mediates intracellular calcium ion (Ca) load. It has been previously found in myocytes isolated from neonatal or diseased hearts. We aimed to determine its existence, molecular nature in undiseased hearts and its potential arrhythmogenic implications under hyperactive conditions.
View Article and Find Full Text PDFAg can form core-shell structures with other non-precious transition metals, which is a promising candidate as an efficient and cost-effective electrocatalyst to replace Pt and RuO for oxygen reduction and evolution reactions (ORR and OER) in fuel cells and metal-air batteries. In this paper, polyicosahedral (plh) AgX (X = 3d transition metals) core-shell structures are calculated systematically by the density functional theory (DFT) method to predict their electrocatalytic activities for ORR and OER. It is found that the strain on the outer shell of the core-shell structures can be an intrinsic descriptor that describes the bifunctional catalytic activities of the catalysts.
View Article and Find Full Text PDFDeveloping cost-effective oxygen electrocatalysts with high activity and stability is key to their commercialization. However, economical earth-abundant catalysts based on first-row transition-metal oxides suffer from low electrochemical stability, which is difficult to improve without compromising their activity. Here, using density functional theory calculations, we demonstrate that noble-metal supports lead to bifunctional enhancement of both the stability and the oxygen reduction reaction (ORR) activity of metal (oxy-hydro) oxide nanoislands.
View Article and Find Full Text PDFCarbon nanomaterials are promising metal-free catalysts for energy conversion and storage, but the catalysts are usually developed via traditional trial-and-error methods. To rationally design and accelerate the search for the highly efficient catalysts, it is necessary to establish design principles for the carbon-based catalysts. Here, theoretical analysis and material design of metal-free carbon nanomaterials as efficient photo-/electrocatalysts to facilitate the critical chemical reactions in clean and sustainable energy technologies are reviewed.
View Article and Find Full Text PDFHibernating animals show resistance to hypothermia-induced cardiac arrhythmias. However, it is not clear whether and how mammalian hibernators are resistant to ischemia-induced arrhythmias. The goal of this investigation was to determine the susceptibility of woodchucks ( Marmota monax) to arrhythmias and their mechanisms after coronary artery occlusion at the same room temperature in both winter, the time for hibernation, and summer, when they do not hibernate.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO reduction in energy conversion and fuel generation.
View Article and Find Full Text PDFMetal-free electrocatalysts have been extensively developed to replace noble metal Pt and RuO catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in fuel cells or metal-air batteries. These electrocatalysts are usually deposited on a 3D conductive support (e.g.
View Article and Find Full Text PDFCovalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H O , a green oxidizer and an energy carrier.
View Article and Find Full Text PDFDepressed patients present with increased cortisol levels and attenuated immune responses. However, little is known about the association between depression and the spleen, as this is the largest peripheral immune organ. In this study, we examined alterations in splenic function and gene expression in mice with depressive-like behavior, well as the expression of certain proteins in related pathways.
View Article and Find Full Text PDF