Publications by authors named "Zhengguo Wei"

PTENα/β, two variants of PTEN, play a key role in promoting tumor growth by interacting with WDR5 through their N-terminal extensions (NTEs). This interaction facilitates the recruitment of the SET1/MLL methyltransferase complex, resulting in histone H3K4 trimethylation and upregulation of oncogenes such as NOTCH3, which in turn promotes tumor growth. However, the molecular mechanism underlying this interaction has remained elusive.

View Article and Find Full Text PDF

Tudor domain-containing protein 3 (TDRD3) is involved in regulating transcription and translation, promoting breast cancer progression, and modulating neurodevelopment and mental health, making it a promising therapeutic target for associated diseases. The Tudor domain of TDRD3 is essential for its biological functions, and targeting this domain with potent and selective chemical probes may modulate its engagement with chromatin and related functions. Here we reported a study of TDRD3 antagonist following on our earlier work on the development of the SMN antagonist, Compound 1, and demonstrated that TDRD3 can bind effectively to Compound 2, a triple-ring analog of Compound 1.

View Article and Find Full Text PDF

Arabidopsis LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a unique homolog of HP1 in Drosophila, plays important roles in plant development, growth, and architecture. In contrast to specific binding of the HP1 chromodomain to methylated H3K9 histone tails, the chromodomain of LHP1 has been shown to bind to both methylated H3K9 and H3K27 histone tails, and LHP1 carries out its function mainly via its interaction with these two epigenetic marks. However, the molecular mechanism for the recognition of methylated histone H3K9/27 by the LHP1 chromodomain is still unknown.

View Article and Find Full Text PDF

In recent decades, silk fibroin (SF) from silkworm has been extensively researched and applied in several fields, including: cosmetics, biomedicine and biomaterials. The dissolution and regeneration of SF fibers is the key and prerequisite step for the application of silk protein-based materials. Various solvents and dissolving systems have been reported to dissolve SF fibers.

View Article and Find Full Text PDF
Article Synopsis
  • * Findings show that while dSF has comparable structure and thermal stability, uSF has higher viscosity, surface tension, and greater elongation capacity.
  • * The research highlights that dSF is more effective for certain applications, including cell culture and enzyme activity, indicating its potential for use in tissue engineering and bioactive materials.
View Article and Find Full Text PDF

The dissolution of silk fibroin in highly concentrated neutral salt solution and the subsequent long time-costing desalination have long inhibited silk regeneration. Here, a 4-fold volume of acetone was first added into a silk fibroin of 9.3 M LiBr solution (SF-LBS) to extract the dissolved silk protein.

View Article and Find Full Text PDF

The dissolution and regeneration of silk fibre have long been an issue for producers of silk. The high solubility of silk fibroin (SF) in ionic liquids (ILs) is a promising new avenue in silk dissolution and regeneration as it may allow for a significant reduction in operational steps required for SF regeneration and the subsequent formation of SF biomaterials. The regenerated SF solution can be prepared by dissolving directly SF in ILs without the tedious steps of degumming, dissolution and dialysis.

View Article and Find Full Text PDF

The sericin protein from silk-processing waste added to the normal diet at 0.8% (g%) level was administered orally to type 2 diabetic (T2D) mice to investigate its hypoglycaemic effects and mechanism. The oral protein is in the form of silk sericin hydrolysate, obtained from a boiling treatment of 0.

View Article and Find Full Text PDF

Background: Diabetic nephropathy (DN) is one of the major complications of diabetes. Sericin and flavonoids are two bioactive substances which have been demonstrated to have some therapeutical effect on diabetic nephropathy. The aim of this paper is to investigate the effect of ethanolic extract (EE) rich in quercetin and kaempferol and their glucosides from the green cocoon of silkworm Bombyx mori on DN in type 2 diabetic (T2D) mice induced by high-fat and streptozotocin (STZ).

View Article and Find Full Text PDF

Diabetes mellitus is a clinically complex disease characterized by hyperglycaemia with disturbances in carbohydrate, fat and protein metabolism. The aim of this study was to determine the therapeutic effect of ethanolic extract (EE) from the green cocoon sericin layer of silkworm on mice with type 2 diabetes mellitus (T2DM) and its hypoglycaemic mechanisms. The results showed that oral EE for 7 weeks had significant ameliorative effects on all the biochemical parameters studied .

View Article and Find Full Text PDF

The silk sericin hydrolysate (SSH) from the waste of silk processing as a substitute of fetal bovine serum (FBS) was used for the culture of Chinese hamster ovary (CHO) cells and Henrietta Lacks (Hela) strain of human cervical cancer cells. The survival ratio of these cells cultured in SSH media were similar to or higher than those in FBS media. Especially after the serum was replaced by low concentration of SSH at 15.

View Article and Find Full Text PDF

In insects, cytochrome P450 monooxygenases (P450s) are involved in the metabolism of endogenous compounds such as steroid hormones and lipids. In this study, we measured the 20-hydroxyecdysone (20E)-induced transcriptional level of the CYP6ab4 gene using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) with a dual spike-in strategy. We then probed possible physiological functions using RNAi experiments in the silkworm Bombyx mori.

View Article and Find Full Text PDF

The nuclear receptor, ultraspiracle protein (USP), is a transcription factor and an essential component of a heterodimeric receptor complex with ecdysone receptor. However, the mechanisms underlying the transcriptional regulation of USP in silkworm are unknown. In this study, using dual-spike-in qPCR method, we examined the expression of Bombyx ultraspiracle gene (BmUSP) in various tissues of silkworm as well as expression changes after stimulation with ecdysone.

View Article and Find Full Text PDF

The Glutathione S-transferases (GSTs) are a large family of multifunctional enzymes, many of which play an important role in the detoxification of endogenous and exogenous toxic substances. In this research, firstly, we measured the rutin-induced transcriptional level of BmGSTd1 gene by using real-time quantitative RT-PCR method and dual spike-in strategy. The activities of the BmGSTd1 promoter in various tissues of silkworm were measured by firefly luciferase activity and normalized by the Renilla luciferase activity.

View Article and Find Full Text PDF

β-N-acetylglucosaminidase (GlcNAcase) is a key enzyme in the chitin decomposition process. In this study, we investigated the gene expression profile of GlcNAcases and the regulation mechanism for one of these genes, BmGlcNAcase1, in the silkworm. We performed sequence analysis of GlcNAcase.

View Article and Find Full Text PDF

Carboxylesterase (CarE) is a multifunctional superfamily, and it plays important roles in xenobiotic detoxification, pheromone degradation, neurogenesis and regulating development. In this research, firstly, we measured the rutin-induced transcriptional level of BmCarE-10 gene by using real-time quantitative RT-PCR method, and dual spike-in strategy. Several possible physiological functions were certified preliminarily by RNAi experiments in silkworm.

View Article and Find Full Text PDF

Cytochrome P450s (CYPs) are widespread proteins that interact with exogenous chemicals from the diet or the environment. CYP9A subfamily genes are important in the silkworm Bombyx mori. We previously reported transcriptional levels of two CYP9A genes in different tissues and their responses to sodium fluoride (NaF).

View Article and Find Full Text PDF

In general, for real-time quantitative polymerase chain reaction (qPCR), normalization strategies use a reference gene as a control and to avoid the introduction of experimental errors expression of this gene should not vary in response to changing conditions. However, the expression of many reference genes has been reported to vary considerably and, without appropriate normalization, the expression profile of a target gene can be misinterpreted. In this study, the expression levels of seven commonly used reference genes (ACT, GAPDH, 28srRNA, RPL3, α-tubulin, UBC, and TBP) were detected at different development time points and in response to treatment with 20-hydroxyecdysone (20E) and with rutin.

View Article and Find Full Text PDF
Article Synopsis
  • Glutathione S-transferases (GSTs) are a key gene family involved in insecticide resistance, with specific focus on six BmGST genes in Bombyx mori larvae.
  • A real-time quantitative RT-PCR technique was utilized to assess gene expression levels in different larval tissues and their responses to insecticides and fluoride exposure.
  • Findings revealed variable expression patterns of BmGSTs across tissues, highlighting their distinct responses to insecticides and fluoride, which may aid in creating pesticide-resistant silkworms.
View Article and Find Full Text PDF