Publications by authors named "Zhengguang Sun"

The aim of this study is to investigate the effect of the adhesive, conductive hydrogel on wound healing when used as a therapeutic dressing. Herein, a dressing of PVA/QCS/TP@Fe (PQTF) was designed and prepared integrating polyvinyl alcohol (PVA), chitosan quaternary ammonium salt (QCS), tea polyphenol (TP), and ferric ions (Fe) by a simple one-pot and freeze-thaw method. In view of the comprehensive properties of PQTF hydrogel, including adhesion, electrical conductivity, and swelling performance, PQTF was selected for subsequent in vitro and in vivo healing promotion studies.

View Article and Find Full Text PDF

Carbonized polymer dots (CPDs) have highly potential application value in the field of optoelectronic devices due to their preferable stability, excellent optical properties and low cost. Here, the nitrogen-doped carbonized polymer dots (HNCDs) with self-quenching-resistant fluorescence were prepared via a simple solvothermal method with citric acid, urea and 2-hydroxyethyl methacrylate (HEMA) as raw materials. The structure and optical properties of the HNCDs have been explored in detail by various contrast experiments.

View Article and Find Full Text PDF

Carbon dots have been widely focused on the field of metal ion detection due to their excellent optical property. Herein, novel orange fluorescent nitrogen and boron co-doped carbon dots (NB-CDs) are obtained by one-pot solvothermal using p-phenylenediamine and boric acid as raw materials. The NB-CDs exhibit excitation-independent emissions and the maximum emission wavelength is 597 nm at 420 nm excitation.

View Article and Find Full Text PDF

Carbon quantum dots (CDs) have attracted tremendous interest owing to their idiosyncratic functions and wide-ranging applications. However, it remains a great challenge to empolder an integrated CDs combining high luminescence, biocompatibility and luminescence color tunability for bioimaging via simple approach. In this work, pH-responsive carbon quantum dots (Si-CDs) with high luminescence (quantum yield = 74.

View Article and Find Full Text PDF

The efficient separation of Sr/Mg through nanofiltration (NF) technology is a great challenge because Sr and Mg ions are congeners with the same valence and chemical properties. In this work, an NF membrane under an electric field (EF) was successfully employed to separate Mg and Sr ions for the first time. The effects of current densities, Mg/Sr mass ratios, pH of the feed, and coexisting cations on separation performance were investigated.

View Article and Find Full Text PDF

Silane-functionalized carbon dots (SiCDs) can be exploited as effective color converting materials for the solid-state light-emitting devices. However, most of SiCDs reported thus far have shown photoluminescence emissions in the blue and green spectral range, which limit them to construct an efficient white light-emitting diodes (WLEDs) due to the lack of long-wavelength emission. Herein, a series of double silane-functionalized carbon dots (DSiCDs) were prepared via a one-step solvothermal method.

View Article and Find Full Text PDF

In order to overcome the challenge of synchronously strengthening and toughening polypropylene (PP) with a low-cost and environmental technology, CaCO (CC) nanoparticles are modified by tartaric acid (TA), a kind of food-grade complexing agent, and used as nanofillers for the first time. The evaluation of mechanical performance showed that, with 20 wt.% TA-modified CC (TAMCC), the impact toughness and tensile strength of TAMCC/PP were 120% and 14% more than those of neat PP, respectively.

View Article and Find Full Text PDF

To enhance drug utilization and reduce their side effects, the strategy of "tumor-triggered targeting" was introduced to fabricate dual-pH-sensitive chitosan (CHI)/mesoporous silica nanoparticle (MSN)-based anticancer drug delivery system (DDS) in this work. Model drug doxorubicin hydrochloride (DOX) was loaded in MSN, which was modified with benzimidazole (Bz) group. Then chitosan-graft-β-cyclodextrin (CHI-g-CD) was applied as the "gatekeeper" to cover MSN through host-guest interaction between β-CD and Bz.

View Article and Find Full Text PDF

Nowadays, great effort has been devoted to fabricate flexible wearable sensor with high stretchability, moderate modulus, favorable durability, excellent transparency, and satisfactory sensitivity. In this work, we report the preparation of a hybrid double-network (DN) hydrogel by a simple one-pot method. First, chitosan was added into an AlCl solution to form Al-chitosan complex (CS-Al).

View Article and Find Full Text PDF

Mitochondria, as the energy factory of most cells, are not only responsible for the generation of adenosine triphosphoric acid (ATP) but also essential targets for therapy and diagnosis of various diseases, especially cancer. The safe and potential nanoplatform which can deliver various therapeutic agents to cancer cells and mitochondrial targeted imaging is urgently required. Herein, Au nanoparticles (AuNPs), mesoporous silica nanoparticles (MSN), cationic ligand (triphenylphosphine (TPP)), doxorubicin (DOX), and carbon nanodots (CDs) were utilized to fabricate mitochondrial targeting drug delivery system (denoted as CDs(DOX)@MSN-TPP@AuNPs).

View Article and Find Full Text PDF

A redox-responsive chemodynamic therapy (CDT)-based theranostic system composed of hollow mesoporous MnO (H-MnO), doxorubicin (DOX), and fluorescent (FL) carbon nanodots (CDs) is reported for the diagnosis and therapy of cancer. In general, since H-MnO can be degraded by intracellular glutathione (GSH) to form Mn with excellent Fenton-like activity to generate highly reactive ·OH, the normal antioxidant defense system can be injured via consumption of GSH. This in turn can potentiate the cytotoxicity of CDT and release DOX.

View Article and Find Full Text PDF

The partial oxidation on refractory organics in ozonation process and the poor performance of mass transfer between ozone (O) phase and liquid phase by common O distribution techniques inhibit the practical application of O. To overcome these defects, hollow fiber membrane was applied in membrane contact ozonation (MCO)-UV process for the reactive brilliant red X-3B (RBRX-3B) degradation. The efficiency of mass transfer was guaranteed due to the enormous gas/liquid contact area supplied in this bubble-less O transfer process.

View Article and Find Full Text PDF

Thickness controllable porous polymer nanofilm with superior gas storage capacity has gradually emerged as promising adsorbents for capture of CO, due to extremely high surface area and micro-scale pore. In this work, we have developed a novel and facile strategy to fabricate thickness controllable two or three dimensional ordered porous nanofilm based on poly(styrene-butyl acrylate), in combination with covalently layer by layer (LBL) self-assemble process and hypercrosslinked post-treatment. Abundant microporous structures and a small number of mesoporous structures are formed in hypercorsslinked nanofilm and corresponding surface area derived from Brunauer-Emmett-Teller method (BET) were determined to be 605.

View Article and Find Full Text PDF

Stimuli-sensitive drug delivery systems show beneficial features of both medical and pharmaceutical fields. In this article, polymeric nanogel P (N-isopropylacrylamide-N,N '-dimethylaminoethyl methacrylate [NIPAM-DMAEMA]) (PND) with pH/redox/thermo-responsivenesses was synthesized by the in situ polymerization of NIPAM and DMAEMA for the controlled release of doxorubicin hydrochloride (DOX) and N,N '-bis(acryloyl)cystamine (BAC) and N,N '-methylenebisacrylamide (MBA) act as the crosslinkers, respectively. The structure, size, and zeta potential of PND-BAC and PND-MBA were further characterized.

View Article and Find Full Text PDF

Multifunctional polymer composites with both high dielectric constants and high thermal conductivity are urgently needed by high-temperature electronic devices and modern microelectromechanical systems. However, high heat-conduction capability or dielectric properties of polymer composites all depend on high-content loading of different functional thermal-conductive or high-dielectric ceramic fillers (every filler volume fraction ≥ 50%, i.e.

View Article and Find Full Text PDF

Due to the difference of pH values between normal tissues, tumor tissues and intracellular environments, DOX@MSN-CD-PEG, a stepwise-acid-active organic/inorganic hybrid drug delivery system (DDS) was reported in this article. The inorganic mesoporous silica nanoparticle (MSN) was introduced for loading of doxorubicin hydrochloride (DOX). Then organic components were applied to achieve the stepwise-acid-active intracellular drug release: MSN was capped with a β-cyclodextrine (β-CD) based host-guest system via pH-sensitive epoxy bond.

View Article and Find Full Text PDF

PbS and Ag2S nanorods have been synthesized using a polyol process in the presence of poly(vinylpyrrolidone) (PVP). First, the production of Pb or Ag was realized via the thermal decomposition of a lead/silver salt. Then the Pb or Ag precursor was directly combined with S power under heating, leading to the formation of the final products.

View Article and Find Full Text PDF

Zinc oxide (ZnO) thin-film transistors (TFTs) have many promising applications in the areas of logic circuits, displays, ultraviolet detectors, and biosensors due to their high performances, facile fabrication processing, and low cost. The solution method is an important technique for low-cost and large fabrication of oxide semiconductor TFTs. However, a key challenge of solution-processable ZnO TFTs is the relatively high processing temperature (≥500 °C) for achieving high carrier mobility.

View Article and Find Full Text PDF

For achievement of controllability in drug delivery, development of nanocarriers with thermal response is one of the most investigated stimulative strategies for oncological treatment. How to improve the thermosensitivity of the nanocarriers is an important factor for their successful drug delivery applications. In this study, a kind of complexed nanogels (PNACD) was developed by incorporating β-cyclodextrin (β-CD) into the nanogels of copolymers of N-isopropylacrylamide (NIPAM) and acrylic acid (AA) during their polymerization via in situ crosslinking of N,N'-methylenebisacrylamide (MBA) as a crosslinker.

View Article and Find Full Text PDF

To explore the potential biomedical application of thermoresponsive nanosystems, it is important to enhance their thermosensitivity to improve the controllability in delivery of therapeutic agents. The present work develops multifunctional nanogels with enhanced thermosensitivity through copolymerization of N-isopropylacrylamide (NIPAM) and acrylic acid (AA) in the presence of β-cyclodextrin (β-CD), using N,N'-bis(acryloyl)cystamine (BAC) as a biodegradable crosslinker. The resulting nanogels display significantly improved sensitivity in deswelling (swelling) behavior upon temperature increase (decrease) around body temperature.

View Article and Find Full Text PDF