The huge volumetric expansion (>300 %) of Si that occurs during the charge-discharge process makes it to have poor cycling ability and weak stable structure. These factors are considered as critical obstacles to the further development of Si as anode for lithium-ion batteries (LIBs). Herein, novel 3D interpenetrating microspheres, i.
View Article and Find Full Text PDFThe synergetic effect between two or more electrochemically active materials usually leads to superior lithium-ion storage performance. This work demonstrates a straightforward and effective approach to synthesize a reduced graphene oxide (RGO) encapsulated larger goethite (FeOOH) nanoparticles and smaller tin dioxide (SnO) quantum dots hierarchical composite (SnO@FeOOH/RGO). The synthesized SnO@FeOOH/RGO composite exhibits encouraging lithium-ion storage capability than controlled SnO/RGO and FeOOH/RGO samples with a stable specific capacity of 638 mAh·g under a high current rate of 1000 mA·g for 2000 continual cycles and good rate performance.
View Article and Find Full Text PDF