A three-dimensional (3D) numerical model was developed to explore the intricate aerodynamic mechanisms associated with aerosol jet printing (AJP). The proposed approach integrates computational fluid dynamics and discrete phase modeling, offering a comprehensive understanding of the deposition mechanisms of the AJP process. Initially, numerical solutions of the governing equations were obtained under the assumptions of compressible and laminar flows, facilitating an analysis of certain key flow variables, in this case, the sheath gas flow rate and carrier gas flow rate across the fluid domain.
View Article and Find Full Text PDFIn the laser powder bed fusion process, the melting-solidification characteristics of 316L stainless steel have a great effect on the workpiece quality. In this paper, a multi-physics model was constructed using the finite volume method (FVM) to simulate the melting-solidification process of a 316L powder bed via laser powder bed fusion. In this physical model, the phase change process, the influence of temperature gradient on surface tension of molten pool, and the influence of recoil pressure caused by the metal vapor on molten pool surface were considered.
View Article and Find Full Text PDFThe purpose of this study was to investigate the potential of taste sensors coupled with chemometrics for rapid determination of beef adulteration. A total of 228 minced meat samples were prepared and analyzed via raw ground beef mixed separately with chicken, duck, and pork in the range of 0 ~ 50% by weight at 10% intervals. Total sugars, protein, fat, and ash contents were also measured to validate the differences between raw meats.
View Article and Find Full Text PDF