Publications by authors named "Zhenggang Gong"

Plywood is widely used in construction, such as for flooring and interior walls, as well as in the manufacture of household items such as furniture and cabinets. Such items are made of wood veneers that are bonded together with adhesives such as urea-formaldehyde and phenol-formaldehyde resins. Researchers in academia and industry have long aimed to synthesize lignin-phenol-formaldehyde resin adhesives using biomass-derived lignin, a phenolic polymer that can be used to substitute the petroleum-derived phenol.

View Article and Find Full Text PDF

Lignin structural analysis is important for the comprehensive utilization of lignin as well as delignification and bleaching during pulping while it is difficult to completely elucidate lignin structure due to its structural complexity and heterogeneity. Depolymerization of lignin into simple monomers via alkaline cupric oxide oxidation (Ox) followed by chromatographic analysis of the monomers is an effective method for lignin structural analysis. Here we revisited the Ox of lignin model compounds (monomers and dimers) and three representative lignocelluloses (i.

View Article and Find Full Text PDF

Chemical pretreatment followed by enzymatic hydrolysis has been regarded as a viable way to produce fermentable sugars. Phenylsulfonic acid (PSA) pretreatment could efficiently fractionate the non-cellulosic components (hemicelluloses and lignin) from bamboo and result in increased cellulose accessibility that was 10 times that of untreated bamboo. However, deposited lignin could trigger non-productive adsorption to enzymes, which therefore significantly decreased the enzymatic hydrolysis efficiency of PSA-pretreated bamboo substrates.

View Article and Find Full Text PDF

Efficient enzymatic hydrolysis of cellulose in lignocellulose to glucose is one of the most critical steps for the production of biofuels. The nonproductive adsorption of lignin to expensive cellulase highly impedes the development of biorefinery. Understanding the lignin-cellulase interaction mechanism serves as a vital basis for reducing such nonproductive adsorption in their practical applications.

View Article and Find Full Text PDF

Lignin deposits formed on the surface of pretreated lignocellulosic substrates during acidic pretreatments can non-productively adsorb costly enzymes and thereby influence the enzymatic hydrolysis efficiency of cellulose. In this article, peanut protein (PP), a biocompatible non-catalytic protein, was separated from defatted peanut flour (DPF) as a lignin blocking additive to overcome this adverse effect. With the addition of 2.

View Article and Find Full Text PDF

A hydrotrope-based pretreatment, benzenesulfonic acid (BA) pretreatment, was used to fractionate bamboo in this work. With optimized content (80 wt %) of BA in pretreatment liquor, about 90% of lignin and hemicellulose could be removed from bamboo under mild conditions (95 °C, 30 min or 80 °C, 60 min). The potential accessibility of BA pretreated substrate to cellulase was thus significantly improved and was also found to be much higher than those of acidic ethanol and dilute acid pretreatments.

View Article and Find Full Text PDF

Due to the invalidity of traditional models, pretreatment conditions dependent parameter of susceptible dissolution degree of xylan (d) was introduced into the kinetic models. After the introduction of d, the dissolution of xylan, and the formation of xylo-oligosaccharides and xylose during ethanol based auto-catalyzed organosolv (EACO) pretreatments of bamboo were well predicted by the pseudo first-order kinetic models (R² > 97%). The parameter of d was verified to be a variable dependent of EACO pretreatment conditions (such as solvent content in pretreatment liquor and pretreatment temperature).

View Article and Find Full Text PDF