Publications by authors named "Zhengfu Yang"

The StMADS11 subfamily genes play a crucial role in regulating flowering time, flower development, and bud dormancy in plants. These genes exhibit functional differences between annual and perennial woody plants. In hickory (Carya cathayensis Sarg.

View Article and Find Full Text PDF

Phosphatidyl ethanolamine-binding protein (PEBP) plays important roles in plant growth and development. However, few studies have investigated the PEBP gene family in pecan (Carya illinoinensis), particularly the function of the PEBP-like subfamily. In this study, we identified 12 PEBP genes from the pecan genome and classified them into four subfamilies: MFT-like, FT-like, TFL1-like and PEBP-like.

View Article and Find Full Text PDF

The central dogma of genetics, which outlines the flow of genetic information from DNA to RNA to protein, has long been the guiding principle in molecular biology. In fact, more than three-quarters of the RNAs produced by transcription of the plant genome are not translated into proteins, and these RNAs directly serve as non-coding RNAs in the regulation of plant life activities at the molecular level. The breakthroughs in high-throughput transcriptome sequencing technology and the establishment and improvement of non-coding RNA experiments have now led to the discovery and confirmation of the biogenesis, mechanisms, and synergistic effects of non-coding RNAs.

View Article and Find Full Text PDF

Pecan (Carya illinoinensis) and Chinese hickory (Carya cathayensis) are important commercially cultivated nut trees. They are phylogenetically closely related plants; however, they exhibit significantly different phenotypes in response to abiotic stress and development. The rhizosphere selects core microorganisms from bulk soil, playing a pivotal role in the plant's resistance to abiotic stress and growth.

View Article and Find Full Text PDF

Pecan () nuts are delicious and rich in unsaturated fatty acids, which are beneficial for human health. Their yield is closely related to several factors, such as the ratio of female and male flowers. We sampled and paraffin-sectioned female and male flower buds for one year and determined the stages of initial flower bud differentiation, floral primordium formation, and pistil and stamen primordium formation.

View Article and Find Full Text PDF

Pecan () is a popular tree nut. Its fruit development undergoes slow growth, rapid expansion, core hardening, and kernel maturation stages. However, little is known about how pecan initiates fruit development and enlargement after pollination.

View Article and Find Full Text PDF

Flower bud differentiation represents a crucial transition from vegetative growth to reproductive development. (hickory) is an important economic species in China, with a long juvenile period that hinders its commercial development. In recent years, circular RNAs (circRNAs) have been widely studied and identified as sponges for miRNA regulation of mRNA expression.

View Article and Find Full Text PDF

Biomass energy is an essential component of the agriculture economy and represents an important and particularly significant renewable energy source in the fight against fossil fuel depletion and global warming. The recognition that many plants naturally synthesize hydrocarbons makes these oil plants indispensable resources for biomass energy, and the advancement of next-generation sequencing technology in recent years has now made available mountains of data on plants that synthesize oil. We have utilized a combination of bioinformatic protocols to acquire key information from this massive amount of genomic data and to assemble it into an oil plant genomic information repository, built through website technology, including Django, Bootstrap, and echarts, to create the Genomic Information Repository for Oil Plants (GROP) portal (http://grop.

View Article and Find Full Text PDF

Heading date (HD) is one of the agronomic traits that influence maturity, regional adaptability, and grain yield. The present study was a follow-up of a previous quantitative trait loci (QTL) mapping study conducted on three populations, which uncovered a total of 62 QTLs associated with 10 agronomic traits. Two of the QTLs for HD on chromosome 7 ( and ) had a common flanking marker (RM3670) that may be due to tight linkage, and/or weakness of the statistical method.

View Article and Find Full Text PDF

Hickory, an endemic woody oil and fruit tree species in China, is of great economic value. However, hickory has a long juvenile period and an inconsistent flowering of males and females, thus influencing the bearing rates and further limiting fruits yield. Currently, it is reported that long noncoding RNAs (lncRNAs) play critical regulatory roles in biological processes.

View Article and Find Full Text PDF

Due to its peculiar morphological characteristics, there is dispute as to whether the genus of , a species of Juglandaceae, is or . Most morphologists believe it should be distinguished from the genus while genomicists suggest that belongs to the genus. To explore the taxonomic status of using chloroplast genes, we collected chloroplast genomes of 16 plant species and assembled chloroplast genomes of 10 unpublished species.

View Article and Find Full Text PDF

The AP2 transcriptional factors (TFs) belong to the APETALA2/ ethylene-responsive factor (AP2/ERF) superfamily and regulate various biological processes of plant growth and development, as well as response to biotic and abiotic stresses. However, genome-wide research on the AP2 subfamily TFs in the pecan () is rarely reported. In this paper, we identify 30 AP2 subfamily genes from pecans through a genome-wide search, and they were unevenly distributed on the pecan chromosomes.

View Article and Find Full Text PDF

Rice ( L.) occupies a very salient and indispensable status among cereal crops, as its vast production is used to feed nearly half of the world's population. Male sterile plants are the fundamental breeding materials needed for specific propagation in order to meet the elevated current food demands.

View Article and Find Full Text PDF

Key message Rice male fertility gene Baymax1, isolated through map-based cloning, encodes a MYB transcription factor and is essential for rice tapetum and microspore development.Abstract The mining and characterization of male fertility gene will provide theoretical and material basis for future rice production. In Arabidopsis, the development of male organ (namely anther), usually involves the coordination between MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic helix-loop-helix) members.

View Article and Find Full Text PDF

Seed setting rate is one of the major components that determine rice (Oryza sativa L.) yield. Successful fertilization is necessary for normal seed setting.

View Article and Find Full Text PDF

Male reproductive development involves a complex series of biological events and precise transcriptional regulation is essential for this biological process in flowering plants. Several transcriptional factors have been reported to regulate tapetum and pollen development, however the transcriptional mechanism underlying Ubisch bodies and pollen wall formation remains less understood. Here, we characterized and isolated a male sterility mutant of TDR INTERACTING PROTEIN 3 (TIP3) in rice.

View Article and Find Full Text PDF

OsMS1 functions as a transcriptional activator and interacts with known tapetal regulatory factors through its plant homeodomain (PHD) regulating tapetal programmed cell death (PCD) and pollen exine formation in rice. The tapetum, a hallmark tissue in the stamen, undergoes degradation triggered by PCD during post-meiotic anther development. This degradation process is indispensable for anther cuticle and pollen exine formation.

View Article and Find Full Text PDF
Article Synopsis
  • The systematic coordination of processes is crucial for male reproductive development in flowering plants, particularly in the degradation of the anther wall for pollen formation.
  • A conserved gene related to glycerol-3-phosphate acyltransferase plays a key role in the degradation of the anther wall and the formation of pollen exine, with mutations leading to male sterility due to failed pollen maturation.
  • The study offers insights into the gene's function in rice male reproductive development and its potential application in hybrid rice breeding.
View Article and Find Full Text PDF

Stigma exsertion is a key determinant to increase the efficiency of commercial hybrid rice seed production. The major quantitative trait locus (QTL) qSE7 for stigma exsertion rate was previously detected on the chromosome 7 using 75 Chromosome Segment Substitution Lines (CSSLs) derived from a cross between the high stigma exsertion indica maintainer XieqingzaoB (XQZB) and low stigma exsertion indica restorer Zhonghui9308 (ZH9308). The C51 line, a CSSL population with an introgression from XQZB, was backcrossed with ZH9308 to produce the secondary F (BCF) and F (BCF) populations.

View Article and Find Full Text PDF

Anther cuticle and pollen exine are two elaborated lipid-soluble barriers protecting pollen grains from environmental and biological stresses. However, less is known about the mechanisms underlying the synthesis of these lipidic polymers. Here, we identified a no-pollen male-sterility mutant cyp703a3-3 from the indica restorer line Zhonghui 8015 (Zh8015) mutant library treated with Coγ-ray radiation.

View Article and Find Full Text PDF

Meiosis is crucial in reproduction of plants and ensuring genetic diversity. Although several genes involved in homologous recombination and DNA repair have been reported, their functions in rice () male meiosis remain poorly understood. Here, we isolated and characterized the rice () gene, encoding a conserved AAA-ATPase, and explored its function and importance in male meiosis and pollen formation.

View Article and Find Full Text PDF

Flowering time is an important agronomic trait that coordinates the plant life cycle with regional adaptability and thereby impacts yield potentials for cereal crops. The CONSTANS (CO)-like gene family plays vital roles in the regulation of flowering time. CO-like proteins are typically divided into four phylogenetic groups in rice.

View Article and Find Full Text PDF