Publications by authors named "Zhengfeng An"

Article Synopsis
  • Forests are vital for biodiversity and act as significant sinks for carbon and nitrogen, playing a key role in climate change mitigation.
  • The study investigates how different environmental conditions, like resource availability, affect the relationship between tree diversity and the accumulation of carbon and nitrogen in Canada's natural forests.
  • Findings show that tree functional diversity has a stronger positive impact on carbon and nitrogen accumulation in resource-rich environments, suggesting that promoting diverse forests in these areas could enhance carbon sequestration more effectively.
View Article and Find Full Text PDF

The tradeoff between community-level soil microbial metabolic efficiency and resource acquisition strategies during natural regeneration remains unclear. Herein, we examined variations in soil extracellular enzyme activity, microbial metabolic quotient (qCO), and microbial carbon use efficiency (CUE) along a chronosequence of natural regeneration by sampling secondary forests at 1, 10, 20, 30, 40, and 100 years after rubber plantation (RP) clearance. The results showed that the natural logarithms of carbon (C)-, nitrogen (N)-, and phosphorus (P)-acquiring enzyme activities were 1:1.

View Article and Find Full Text PDF

Background: Tillage practices can substantially affect soil properties depending on crop stage. The interaction between tillage and crop growth on arbuscular mycorrhizal fungi (AMF) communities remains unclear. We investigated the interactions between four tillage treatments (CT: conventional tillage, RT: reduced tillage, NT: no tillage with mulch, and SS: subsoiling with mulch), maintained for 25 years, and two wheat growth stages (elongation stage and grain filling stage) on AMF diversity and community composition.

View Article and Find Full Text PDF

Microplastic (MP) pollution is a growing global issue due to its potential threat to ecosystem and human health. Low-density polyethylene (LDPE) MP is the most common type of plastics polluting agricultural soils, negatively affecting soil-microbial-plant systems. However, the effects of LDPE MPs on the carbon (C): nitrogen (N): phosphorus (P) of soil-microbial-plant systems have not been well elucidated.

View Article and Find Full Text PDF

In the background of climate warming, the demand for improving soil quality and carbon (C) sequestration is increasing. The application of biochar to soil has been considered as a method for mitigating climate change and enhancing soil fertility. However, it is uncertain whether the effects of biochar application on C-mineralization and N transformation are influenced by the presence or absence of plant growth-promoting bacteria (PGPB) and soil nitrogen (N) level.

View Article and Find Full Text PDF

Pulp mill biosolids (hereafter 'biosolids') could be used as an organic amendment to improve soil fertility and promote crop growth; however, it is unclear how the application of biosolids affects soil greenhouse gas emissions and the mechanisms underlying these effects. Here, we conducted a 2-year field experiment on a 6-year-old hybrid poplar plantation in northern Alberta, Canada, to compare the effects of biosolids, conventional mineral fertilizer (urea), and urea + biosolids on soil CO, CH NO emissions, as well as soil chemical and microbial properties. We found that the addition of biosolids increased soil CO and NO emissions by 21 and 17%, respectively, while urea addition increased their emissions by 30 and 83%, respectively.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) are widespread in subtropical forests and play a crucial role in belowground carbon (C) dynamics. Nitrogen (N) deposition or fertilization may affect AMF and thus the flux of plant-derived C back to the atmosphere via AMF hyphae. However, the contribution of AMF hyphal respiration to soil respiration and the response AMF hyphal respiration to increased soil N availability remain unknown.

View Article and Find Full Text PDF

Planting broadleaf trees in coniferous forests has been shown to promote biogeochemical cycling in plantations; however, how species mixing influences litter decomposition and release of metallic elements from mixed coniferous-broadleaf litter remains unclear. An in situ litter decomposition experiment was conducted to examine the effect of 1) a mixture from coniferous litter (Pinus massoniana) with different individual broadleaved litter (Bretschneidera sinensis, Manglietia chingii, Cercidiphyllum japonicum, Michelia maudiae, Camellia oleifera) and 2) their mixing ratio (mass ratios of coniferous and broadleaf litter of 5:5, 6:4 and 7:3) on the release of metallic elements [calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), manganese (Mn), iron (Fe), copper (Cu) and zinc (Zn)] during litter decomposition. We found that the identity of the broadleaf tree species in the mixed litter and the mixing ratio affected the release rates of metallic elements (p < 0.

View Article and Find Full Text PDF

Garden wastes (GW) having high lignin contents could hinder the growth of earthworms and microorganisms in vermicomposting. This study investigated the Eisenia fetida-based vermicomposting of GW mixed with cattle manure (CM) and/or spent mushroom substrate (SMS) at different ratios of GW alone (control), 3:1 GW:SMS, 1:1 GW:SMS, 3:1 GW:CM, 1:1 GW:CM and 2:1:1 GW:SMS:CM to promote earthworm growth and improve the final vermicompost quality. In general, treatments with the addition of SMS and/or CM increased the survival rate, biomass, cocoon and juvenile numbers of E.

View Article and Find Full Text PDF

Vermicomposting is a promising method for reusing urban green waste. However, high lignin content in the green waste could hinder the development of earthworm and microorganisms and the vermicomposting process, resulting in a low-quality vermicompost product. The objective of this study was to evaluate the effect of bamboo biochar addition (at 0%, 3%, and 6% on a dry w/w basis) on the activity of Eisenia fetida and the obtained vermicompost.

View Article and Find Full Text PDF