Li-rich layered materials have attracted much attention for their large capacity (>250 mA h g) stemming from anion redox at high voltage. However, inherent problems, such as capacity decay and voltage decay/hysteresis during cycling, hinder their commercial progress. In this work, an oxygen vacancy-accompanied spinel interface layer is constructed by gas-solid reaction NiCO treatment at 650 °C, which reduces the asymmetry of anion redox and improves structural stability.
View Article and Find Full Text PDFThe interface structure of the electrode is closely related to the electrochemical performance of lithium-metal batteries (LMBs). In particular, a high-quality solid electrode interface (SEI) and uniform, dense lithium plating/stripping processes play a key role in achieving stable LMBs. Herein, a LiF-rich SEI and a uniform and dense plating/stripping process of the electrolyte by reducing the electrolyte concentration without changing the solvation structure, thereby avoiding the high cost and poor wetting properties of high-concentration electrolytes are achieved.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
Li- and Mn-rich layered oxide (LMR) materials are a promising candidates for next-generation Li-ion battery (LIB) anode materials because of their high specific capacity. However, their low initial Coulombic efficiency, voltage decay, and irreversible phase transition during cycling are the fatal drawbacks of LMR materials. This work reports on a cobalt-free LMR material composed of primary particles with a boron-induced exposed long- strip-like {010} plane.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2021
Li-rich layered oxides with high capacity are expected to be the next generation of cathode materials. However, the irreversible and sluggish anionic redox reaction leads to the O loss in the surface as well as the capacity and voltage fading. In the present study, a simple gas-solid treatment with ferrous oxalate has been proposed to uniformly coat a thin spinel phase layer with oxygen vacancy and simultaneously realize Fe-ion substitution in the surface.
View Article and Find Full Text PDFNickel-rich layered transition metal oxides are considered as promising cathode candidates to construct next-generation lithium-ion batteries to satisfy the demands of electrical vehicles, because of the high energy density, low cost, and environment friendliness. However, some problems related to rate capability, structure stability, and safety still hamper their commercial application. In this Review, beginning with the relationships between the physicochemical properties and electrochemical performance, the underlying mechanisms of the capacity/voltage fade and the unstable structure of Ni-rich cathodes are deeply analyzed.
View Article and Find Full Text PDF