Micromachines (Basel)
April 2022
In this paper, an online compensation method of phase delay error based on a Phase-Frequency (P-F) characteristic has been proposed for MEMS Coriolis Vibratory Gyroscopes (CVGs). At first, the influences of phase delay were investigated in the drive and sense mode. The frequency response was acquired in the digital control system by collecting the demodulation value of drive displacement, which verified the existence and influence of the phase delay.
View Article and Find Full Text PDFMicromachines (Basel)
February 2020
An automatic mode-matching method for MEMS (Micro-electromechanical Systems) disk resonator gyroscopes (DRGs) based on virtual Coriolis force is presented in this paper. For this mode-matching method, the additional tuning electrodes are not required to be designed, which simplifies the structure design. By using the quadratic relationship between the driving voltage and the electrostatic force, the virtual Coriolis force is obtained by applying an AC voltage whose frequency is half of the driving mode resonant frequency to the sense electrode.
View Article and Find Full Text PDFMicromachines (Basel)
June 2019
Coriolis vibratory gyroscopes (CVGs) with circular micro-resonators, such as hemispherical, ring, and disk resonators, exhibit excellent performances and have extraordinary potential. This paper discusses a generalized lumped mass model for both 3D and planar circular micro-resonators, establishing the relationship between the modal effective mass, the modal equivalent force, and the point displacement of the resonator. The point displacement description of a continuous circular resonator's motion is defined from the view of capacitance measurement.
View Article and Find Full Text PDFMicromachines (Basel)
February 2019
This paper analyzes the effect of the anisotropy of single crystal silicon on the frequency split of the vibrating ring gyroscope, operated in the n = 2 wineglass mode. Firstly, the elastic properties including elastic matrices and orthotropic elasticity values of (100) and (111) silicon wafers were calculated using the direction cosines of transformed coordinate systems. The (111) wafer was found to be in-plane isotropic.
View Article and Find Full Text PDF