Publications by authors named "Zhengbing Guan"

Glucosamine (GlcN), as one of the important derivatives of D-glucose, is formed by the substitution of the hydroxyl group at position 2 of glucose with an amino group. As a bioactive amino monosaccharide, GlcN is known for its various biological effects, including immune enhancement, antioxidant, anti-inflammatory, hepatoprotective, joint pain relief, and alleviation of osteoporosis. These properties highlight the broad applications of GlcN and its derivatives in pharmaceuticals, cosmetics, food production, and other fields, underscoring their promising prospects.

View Article and Find Full Text PDF

As an important functional monosaccharide, glucosamine (GlcN) is widely used in fields such as medicine, food nutrition, and health care. Here, we report a distinct GlcN biosynthesis method that utilizes engineered glucosamine-6-phosphate synthase (GlmS) to convert D-fructose to directly generate GlcN. The best variant obtained by using a combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy was a quadruple mutant S596D/V597G/S347H/G299Q (GlmS-BK19), which has a catalytic activity 1736-fold that of the wild type toward D-fructose.

View Article and Find Full Text PDF

This study explores the impact of mediators and metal ions of laccase-mediated oxidation and ferrate(VI) oxidation for the simultaneous removal of tetracycline antibiotics (TCs) and sulfonamide antibiotics (SAs) and to effectively remove their antimicrobial activity. The results showed that the antimicrobial activity of tetracycline against Bacillus altitudinis and Escherichia coli was significantly reduced, and the antimicrobial activity of sulfamethoxazole against B. altitudinis disappeared completely after treatment with the laccase-ABTS system.

View Article and Find Full Text PDF

Congo Red (CR) is a typical azo dye with highly toxic and carcinogenic properties. This study aimed to improve the decolorization activity of Bacillus pumilus W3 CotA-laccase for azo dye CR. This work analyzed the interaction between CotA-laccase and CR based on homology modeling and molecular docking.

View Article and Find Full Text PDF

Textile wastewater is characterized by high salinity and high temperature, and azo dye decolorization by mixed cultures under extreme salinity and thermophilic environments has received little attention. High salinity and temperature inhibit the biodecolorization efficiency in textile wastewater. In the present study, a halo-thermophilic bacterial consortium (HT1) that can decolorize azo dye at 10% salinity and 50 °C was enriched.

View Article and Find Full Text PDF

Enhancing virus multiplication could assist in the rapid production of vaccines against viral diseases. Cold atmospheric plasma (CAP), a physical approach relying on reactive oxygen species to achieve the desirable cellular outcome, was shown to be effective in enhancing virus propagation, where bovine rhinotrachieitis virus and Madin-Darby Bovine Kidney cells were used as the modeling virus and cell line, respectively. CAP was shown to create synergies with virus infection in arresting host cells at the G2/M stage, decreasing cell membrane potential, increasing intracellular calcium level, and inducing selective autophagy.

View Article and Find Full Text PDF

Reactive Black 5 (RB5) is a typical refractory azo dye. Widespread utilization of RB5 has caused a variety of environmental and health problems. The enzymatic degradation of RB5 can be a promising solution due to its superiority as an eco-friendly and cost-competitive process.

View Article and Find Full Text PDF

The high pH and salinity of textile wastewater is a major hindrance to azo dye decolorization. In this study, a mixed bacterial consortium ZW1 was enriched under saline (10% salinity) and alkaline (pH 10.0) conditions to decolorize Methanil Yellow G (MY-G).

View Article and Find Full Text PDF

As a green biocatalyst, transaminase with high thermostability can be better employed to synthesize many pharmaceutical intermediates in industry. To improve the thermostability of ()-selective amine transaminase from W3, related mutation sites were determined by multiple amino acid sequence alignment between wild-type ω-transaminase and four potential thermophilic ω-transaminases, followed by replacement of the related amino acid residues with proline by site-directed mutagenesis. Three stabilized mutants (D192P, T237P, and D192P/T237P) showing the highest stability were obtained and used for further analysis.

View Article and Find Full Text PDF

In this study, horseradish peroxidase C1A (HRP C1A) from Armoracia rusticana was expressed in Escherichia coli as an inclusion body. Subsequently, an active recombinant HRP C1A was obtained by refolding gradually using dilution-ultrafiltration. The recombinant HRP C1A was immobilized on agarose-chitosan hydrogel at 86.

View Article and Find Full Text PDF

In this study, mutant CotA-laccase SF was successfully expressed in Escherichia coli by co-expression with phospholipase C. The optimized extracellular expression of CotA-laccase SF was 1257.22 U/L.

View Article and Find Full Text PDF

Increasing evidences suggest that intestinal microbiota balance closely correlated with host's health status could affected by external environment. Integrated crayfish-rice cultivation model is a highly efficient artificial ecosystem widely practiced in subtropical China. Less information is available to estimate the influence response to the micro-ecology of crayfish intestine and so as to influence the biological processes.

View Article and Find Full Text PDF

Recently, residual plasticizer phthalate esters (PAEs) in the different environments pose a serious health threat to humans and mammals. Biodegradation has been considered a promising and eco-friendly way to eliminate PAEs. In this study, a gene (baces04) encoding the novel PAEs hydrolase, carboxylesterase (BaCEs04), was screened from the genome of Bacillus velezensis SYBC H47 via bioinformatics analysis.

View Article and Find Full Text PDF

In this study, three active alkaline proteases (AprEs) (BaApr1, BaApr2, and BaApr9) from Bacillus altitudinis W3 were obtained through bioinformatics analysis and verification. Multiple sequence alignment showed low identity of 64.60% and suggested that the three AprEs belonged to the S8A subfamily of serine proteases.

View Article and Find Full Text PDF

Phoxim, a type of organophosphorus pesticide (OP), is widely used in both agriculture and fisheries. The persistence of phoxim has caused serious environmental pollution problems. In this study, YP6 (YP6), which is capable of promoting plant growth and degrading broad-spectrum OPs, was used to study phoxim degradation.

View Article and Find Full Text PDF

CotA-laccases are potential enzymes that are widely used in decolorization of dyes and degradation of toxic substances. In this study, a novel CotA-laccase gene from Bacillus pumilus W3 was applied for rational design. After a series of site-directed genetic mutations, the mutant S208G/F227A showed a 5.

View Article and Find Full Text PDF

A native laccase (Lac-Q) with robust cold-adapted and thermostable characteristics from the white-rot fungus Pycnoporus sp. SYBC-L10 was purified, characterized, and used in antibiotic treatments. Degradation experiments revealed that Lac-Q at 10.

View Article and Find Full Text PDF

Aminotransferases have attracted considerable attention due to their extraordinary potential for the biosynthesis of chiral amines. Research on transaminase genes can facilitate their application to various fields. Herein, 89 putative aminotransferase genes potentially encoding useful biocatalysts were identified in three Bacillus strains genomes by genome annotation.

View Article and Find Full Text PDF

Aminotransferases are widely employed as biocatalysts for the asymmetric synthesis of biologically active pharmaceuticals. Transaminase BpTA from Bacillus pumilus W3 can accept a broad spectrum of sterically demanding substrates, but it does not process the key five-membered ring intermediate of sitafloxacin. In the present study, we rationally constructed numerous single-point mutants and six multi-point mutants by combining the structural characteristics of transaminase and its substrates.

View Article and Find Full Text PDF

Overexploitation of rare earth elements (REEs) has caused serious desertification and environmental pollution. The ecological restoration of mining areas has attracted increasing attention in China. Soil microbiota is important for successful ecological remediation of abandoned mine land.

View Article and Find Full Text PDF

In recent decades, biodegradation has been considered a promising and eco-friendly way to eliminate organophosphorus pesticides (OPs) from the environment. To enrich current biodegrading-enzyme resources, an alkaline phosphatase (AP3) from Bacillus amyloliquefaciens YP6 was characterized and utilized to test the potential for new applications in the biodegradation of five broad-spectrum OPs. Characterization of AP3 demonstrated that activity was optimal at 40 °C and pH 10.

View Article and Find Full Text PDF

Aminotransferases are widely employed as biocatalysts to produce chiral amines and biologically active pharmaceuticals via asymmetric synthesis. In this study, transaminase genes in the Bacillus pumilus W3 genome were analysed, and gene ota3 encoding a putative (R)-selective transaminase was identified. The sequence of ota3 shares highest sequence identity (24.

View Article and Find Full Text PDF

Catechol siderophore plays an important role in microbial ecology, agriculture, and medicine, but its research is often limited by the difficulty in acquisition of it in large quantities. Based on evidence from the coordination chemistry and chemical biology, catechol siderophore could chelate Fe with high affinity. Therefore, Fe(III)-based immobilized metal-affinity chromatography (IMAC) was applied to capture siderophore from the culture filtrate of CD36.

View Article and Find Full Text PDF

Multicopper oxidases (MCOs) are a pervasive family of enzymes that oxidize a wide range of phenolic and nonphenolic aromatic substrates, concomitantly with the reduction of dioxygen to water. MCOs are usually divided into two functional classes: metalloxidases and laccases. Given their broad substrate specificity and eco-friendliness (molecular oxygen from air as is used as the final electron acceptor and they only release water as byproduct), laccases are regarded as promising biological green tools for an array of applications.

View Article and Find Full Text PDF

β-1,3-Glucanase is considered as a useful enzymatic tool for β-1,3-glucan degradation to produce (1→3)-linked β-glucan oligosaccharides with pharmacological activity properties. To validly isolate β-1,3-glucanase-producing microorganisms, the soil of considered an environment rich in β-1,3-glucan-degrading microorganisms, was subjected to high throughput sequencing. The results demonstrated that the genera (1.

View Article and Find Full Text PDF