We propose and experimentally demonstrate a parallel pulsed chaos light detection and ranging (LiDAR) system with a high peak power, parallelism, and anti-interference. The system generates chaotic microcombs based on a chip-scale SiN microresonator. After passing through an acousto-optic modulator, the continuous-wave chaotic microcomb can be transformed into a pulsed chaotic microcomb, in which each comb line provides pulsed chaos.
View Article and Find Full Text PDFFront Optoelectron
September 2023
Ultrafast physical random bit (PRB) generators and integrated schemes have proven to be valuable in a broad range of scientific and technological applications. In this study, we experimentally demonstrated a PRB scheme with a chaotic microcomb using a chip-scale integrated resonator. A microcomb contained hundreds of chaotic channels, and each comb tooth functioned as an entropy source for the PRB.
View Article and Find Full Text PDFBased on dual-sideband suppressed-carrier (DSB-SC) modulation and two-stage cascaded four-wave-mixing (FWM), a scheme of broadband dual-chirp frequency-modulated continuous-wave (FMCW) laser source is proposed and experimentally demonstrated. First, via a Mach-Zehnder modulator biased at its null point, an original DSB-SC FMCW signal with 4.0 GHz swept-frequency range and 0.
View Article and Find Full Text PDFIn this work, we experimentally investigate the nonlinear dynamics of a mid-infrared interband cascade laser (ICL) subject to optoelectronic feedback (OEF) through inspecting the time series and power spectrum of the laser output. The results show that, within the range of feedback strength limited by the experiment condition, the ICL sequentially presents stable state, continuously periodical oscillation (CPO), low-frequency regular pulse (LF-RP) and intermittent oscillation state with the increase of feedback strength. For the LF-RP state, the peak-to-peak value and the oscillation period increase with the increase of feedback strength.
View Article and Find Full Text PDFIn reservoir computing (RC) systems based on semiconductor lasers (SLs), the information that must be processed usually enters the reservoir through optical injection. Part of the injection information directly reflected by the front facet of the SLs is inevitably hybridized into the output of the SLs and contributes to the state of virtual nodes. For an RC system based on vertical-cavity surface-emitting lasers (VCSELs), the proportion of the reflected information coupled to the laser output is relatively huge due to the high surface reflectivity.
View Article and Find Full Text PDFBased on the chaotic signal provided by a simple chaotic system, a random bit sequence with a rate of 640 Gb/s is generated through adopting the circulating exclusive-or (CXOR) post-processing method. Such a simple chaotic system is built via a slave semiconductor laser subject to optical injection of a chaotic signal originated from a master semiconductor laser under multi-path optical feedback. First, through inspecting the dependences of the time-delay-signature (TDS) and bandwidth of the chaotic signal on some key operation parameters, optimized parameters are determined for generating a high-quality chaotic signal with a large bandwidth and low TDS.
View Article and Find Full Text PDFBased on a single-beam injection distributed feedback semiconductor laser (DFB-SL) combining with optical heterodyne, a photonic scheme for generating dual-linear chirp microwave (dual-LCM) signal with identical or complementary chirp is proposed and experimentally demonstrated. For such a scheme, a continuous-wave (CW) light with a frequency of finj is split into two parts. One part is passing through a Mach-Zehnder modulator (MZM) driven by a modified sawtooth signal, and then its intensity varies with time as a sawtooth wave.
View Article and Find Full Text PDFFrequency-modulated continuous-wave (FMCW) can be acquired by using a distributed feedback semiconductor laser (DFB-SL) operating at period-one (P1) oscillation under an optical injection modulated by a Mach-Zehnder modulator (MZM). In this work, through introducing another MZM to establish cascade-modulated optical injection, an improved photonic scheme for generating high-quality FMCW is proposed and experimentally demonstrated. The experimental results indicate that, under appropriate injection parameters, the central frequency of the generated FMCW is widely tunable, and the bandwidth is larger than that obtained under a single MZM modulation.
View Article and Find Full Text PDFIn this work, via autocorrelation function (ACF) and permutation entropy (PE) methods, we numerically investigate the time-delay signature (TDS) characteristics of the chaotic signal output from an optoelectronic oscillator (OEO) after introducing an extra optical feedback loop. The results demonstrate that, for such a chaotic system, both the optoelectronic feedback with a delay time of T and the optical feedback with a delay time of T contribute to the TDS of generated chaos. The TDS of the chaotic signal should be evaluated within a large time window including T and T by the strongest peak in the ACF curve of the chaotic signal, and the strongest peak may locate at near T or T.
View Article and Find Full Text PDFHigh-fat pancreatitis and hyperlipidemia refer to disorders of blood lipid metabolism caused by abnormally elevated blood lipids, and are risk factors for high-risk diseases such as atherosclerosis, coronary heart disease, and cerebral infarction. Hyperlipidemia is also a common disease that is common in modern people, and has a tendency to become younger. In this paper, probucol is made into a self-assembled probucol loaded nanosuspensions (SPN) using molecular selfassembly technology for research on improving its oral absorption.
View Article and Find Full Text PDFA simple reservoir computing (RC) system based on a solitary semiconductor laser under an electrical message injection is proposed, and the performances of the RC are numerically investigated. Considering the lack of memory capacity (MC) in such a system, some auxiliary methods are introduced to enhance the MC and optimize the performances for processing complex tasks. In the pre-existing method, the input information is the current input data combined with some past input data in a weighted sum in the input layer (named as -input).
View Article and Find Full Text PDFBased on a three-level model for quantum dot (QD) lasers, the characteristics of the photonic microwave generated by a QD laser simultaneously subject to optical injection and optical feedback are numerically investigated. First, the performance of the microwave signal generated by an optical injected QD laser operating at period one state are analyzed, and the mappings of the frequency and intensity of the generated microwave in the parameter space of the frequency detuning and injection strength are given, which are roughly similar to those reported experimentally. Next, an optical feedback loop is further introduced to the optically injected QD laser for compressing the linewidth of the microwave signal, and the results demonstrate that the linewidth of the generated microwave can be reduced by at least 1 order of magnitude under suitable feedback parameters.
View Article and Find Full Text PDFRelative phase effect of nonsequential double ionization (NSDI) of aligned molecules by counter-rotating two-color circularly polarized (TCCP) fields is investigated with a three-dimensional classical ensemble model. Numerical results show that NSDI yield in counter-rotating TCCP fields sensitively depends on the relative phase of the two components, which exhibits a sin-like behavior with the period of π/2. NSDI yield achieves its maximum at the relative phase π/8 and minimum at 3π/8.
View Article and Find Full Text PDFSemiconductor-metal hybrid nanostructures present an exotic class of nonlinear optical materials due to their potential optoelectronic applications. However, most studies to date focus on their total optical responses instead of contributions from individual nonlinear orders. In this Letter, we present a theoretical study on the third-order nonlinear optical absorption of a hybrid colloidal semiconductor quantum dot (SQD)-metal nanoparticle (MNP) system.
View Article and Find Full Text PDFA multi-channel wideband chaotic signal generation scheme is proposed and numerically investigated based on a slave multi-transverse mode vertical-cavity surface-emitting laser (SL) subject to chaotic optical injection from a master multi-transverse mode vertical-cavity surface-emitting laser (ML) with optical feedback. Taking two low-order transverse modes, LP01 and LP11, as an example for numerical calculations, the simulated results show that under suitable optical feedback both the LP01 and LP11 modes (two-channel) of a ML can be driven into the chaotic states where their bandwidths are relatively narrow at a level about 8 GHz. Further injecting the two chaotic signals into a SL, for the case of the globally chaotic optical injection, the SL can output two-channel chaotic signals with wide bandwidths above 20 GHz under appropriate operation parameters.
View Article and Find Full Text PDFIn this work, we propose a scheme of reservoir computing (RC) for processing a Santa-Fe time series prediction task and a signal classification task in parallel, and the performances of the RC have been numerically investigated. For this scheme, a vertical-cavity surface-emitting laser (VCSEL) simultaneously subject to double optical feedback and optical injection is utilized as a nonlinear node, and the parallel information processing of the RC system is implemented based on the dynamical responses of X polarization component (X-PC) and Y polarization component (Y-PC) in the VCSEL. Considering that two different feedback frames (polarization-preserved optical feedback (PP-OF) or polarization-rotated optical feedback (PR-OF)) may be adopted in two feedback loops, four feedback combination cases are numerically analyzed.
View Article and Find Full Text PDFVia Santa Fe time series prediction and nonlinear channel equalization tasks, the performances of a reservoir computing (RC) system based on an optical feedback semiconductor laser (SL) under electrical information injection are numerically investigated. The simulated results show that the feedback delay time and strength seriously affect the performances of this RC system. By adopting a current-related optimized feedback delay time and strength, the RC can achieve a good performance for an SL biased within a wide region of 1.
View Article and Find Full Text PDFNonsequential double ionization (NSDI) of Ar in co-rotating two-color circularly polarized (TCCP) laser fields is investigated with a three-dimensional classical ensemble model. Our numerical results indicate that co-rotating TCCP fields can induce NSDI by recollision process, while the yield is an order of magnitude lower than counter-rotating case. NSDI yield in co-rotating TCCP fields strongly depends on field ratio of the two colors and achieves its maximum at a ratio of 2.
View Article and Find Full Text PDFWe experimentally investigate the nonlinear dynamics of two mutually coupled 1550 nm multi-transverse-mode vertical-cavity surface-emitting lasers (VCSELs). The results show that, through continuously varying the coupling coefficient, the -polarization fundamental transverse mode and the -polarization first-order transverse mode in both VCSELs can be driven into period one, period doubling, multi-period, and chaos states. When the two mutually coupled VCSELs are simultaneously operating in the periodic state, localized synchronizations between the corresponding modes are observed.
View Article and Find Full Text PDFBased on the period-one (P1) dynamics of an optically injected semiconductor laser (SL), a photonic scheme enabling the generation of a tunable high-quality frequency-modulated continuous-wave (FMCW) signal is investigated experimentally. Under a modulated optical injection, the laser is driven into P1 oscillation with a modulated microwave frequency. In this work, optical feedback is also introduced to further reduce the microwave phase noise.
View Article and Find Full Text PDFWe report an experimental and numerical investigation on the existence of additional delayed-time in chaos synchronization of two uni-directionally coupled vertical-cavity surface-emitting lasers (VCSELs) for the first time. Under a generalized synchronization scenario, we demonstrate that there exists an additional delayed-time in addition to the time-of-flight between the two coupled VCSELs. The cross-correlation function analysis has been used as a method to determine the coupling delay and synchronization quality between two uni-directionally coupled chaotic VCSELs.
View Article and Find Full Text PDFNonsequential double ionization of helium in counter-rotating two-color circularly polarized laser fields is investigated with a three-dimensional classical ensemble model. At moderate intensity, the momentum distribution of the two electrons shows a maximum in the middle of each side of the triangle of the negative vector potential. At high intensity, the momentum distribution exhibits a double-triangle structure, which is attributed to the different values of the laser intensity where the two electrons are released after recollision.
View Article and Find Full Text PDFUsing a three-dimensional classical ensemble method, we present a theoretical study of nonsequential double ionization of ArXe dimer aligned along the minor axis of the elliptically polarized laser pulse. Numerical results show that NSDI probability firstly increases and then decreases with the laser ellipticity increasing, which is different from atoms. Moreover, the correlated electron momentum spectra from elliptical polarization are always asymmetric, and the asymmetry is enhanced as the ellipticity increases.
View Article and Find Full Text PDFA reservoir computing (RC) system based on a semiconductor laser (SL) with double optical feedback and optical injection is proposed, and the prediction performance of such a system is numerically investigated via Santa Fe Time-Series Prediction task. The simulation results indicate that the RC system can yield a good prediction performance. Through optimizing some relevant operating parameters, ultra-fast information processing rates up to Gb/s level can be realized for the prediction error is below 3%.
View Article and Find Full Text PDFRecollision dynamics and electron correlation behavior are investigated for several long laser wavelengths (1200-3000 nm) in nonsequential double ionization (NSDI) of helium using three-dimensional classical ensembles. Numerical results show that for these long wavelengths NSDI events are mainly from the multiple-return trajectory which is different from the case of 800 nm. Moreover, with increasing laser wavelength NSDI events move from the diagonal to the two axes in the correlated electron momentum distributions, and finally form an experimentally observed prominent V-shaped structure [Phys.
View Article and Find Full Text PDF