Eleven undescribed piperidine alkaloids, arecachines A‒J (1-11), were isolated from the peels of Areca catechu. Compounds 8-11 are featured as bis-piperidine alkaloids. Their structures were elucidated by analysis of UV, IR, HRESIMS, 1D and 2D NMR spectra.
View Article and Find Full Text PDFNatural products (NPs) play an important role in drug discovery and drug development due to their diverse chemical properties and biological activities. In the present work, an on-line capillary electrophoresis (CE) method was developed and applied to screen protein tyrosine phosphatase 1B (PTP1B) inhibitors in NPs. As a generic technique, transverse diffusion of laminar flow profiles (TDLFP) was utilized to mix all reactants in the capillary for on-line enzymatic reaction.
View Article and Find Full Text PDFDynamic tracking analysis of monoclonal antibodies (mAbs) biotransformation is crucial, as certain modifications could inactivate the protein and reduce drug efficacy. However, a particular challenge (i.e.
View Article and Find Full Text PDFThe dynamic tracking of antibody‒drug conjugates (ADCs) in serum is crucial. However, a versatile bioanalytical platform is lacking due to serious matrix interferences, the heterogeneity and complex biotransformation of ADCs, and the recognition deficiencies of traditional affinity technologies. To overcome this, a multiepitope recognition technology (MERT) was developed by simultaneously immobilizing CDR and non-CDR ligands onto MOF@AuNPs.
View Article and Find Full Text PDFChlorogenic acid (CGA) is a key component in Aidi injection, known for its anti-cancer properties and ability to reduce toxicity. Therefore, accurate detection of CGA levels in Aidi injection is essential for monitoring therapeutic efficacy and minimizing adverse effects. This study presents a rapid and simple fluorescent method for detecting CGA in Aidi injection using aggregation-induced emission (AIE) nanoclusters, i.
View Article and Find Full Text PDFThe structure of zwitterion has great impact on the separation properties of zwitterionic hydrophilic stationary phases. To better understand the role of anionic groups of zwitterions, a novel carboxybetaine-based zwitterionic monolithic column was first prepared through thermo-initiated copolymerization of functional monomer (3-acrylamidopropyl)-dimethyl-(2-carboxymethyl) ammonium (CBAA) and crosslinker ethylene dimethacrylate (EDMA) within 100 μm ID capillary. The optimal poly(CBAA-co-EDMA) monolithic column exhibited satisfactory mechanical and chemical stability, good repeatability, high column efficiency (96,000 plates/m), and excellent separation performance for different classes of polar compounds (i.
View Article and Find Full Text PDFRapid and accurate diagnosis of tuberculosis (TB) is of great significance to control the spread of this devastating infectious disease. In this work, a sensitive and low-cost point-of-care testing (POCT) detection platform for TB was developed based on recombinase polymerase amplification (RPA)-catalytic hairpin assembly (CHA)-assisted dual signal amplification strategy. This platform could achieve homogeneous fluorescent and visual diagnosis of TB by using CdTe quantum dots (QDs) signal reporter.
View Article and Find Full Text PDFBackground: The unique size, physical and chemical properties, and ultra-high stability of nanozymes have attracted extensive attentions in sensing, but improvement of catalytic activity of the nanozymes is still an urgent issue. Given the ultra-high simulated enzyme activity of metal nanoparticles and the advantage of multi-enzyme catalysis, an Au-decorated MoS nanosheets (MoS/Au NS) integrating the double peroxidase-like (POD) activity is developed.
Results: By optimizing and adjusting the density of AuNPs, as well as its morphology and other parameters, a monodisperse and high-density distribution of AuNPs on MoS nanosheets was obtained, which can greatly improve the POD-like activity of MoS/Au NS.
Accurate orientations and stable conformations of membrane receptor immobilization are particularly imperative for accurate drug screening and ligand-protein affinity analysis. However, there remain challenges associated with (1) traditional recombination, purification, and immobilization of membrane receptors, which are time-consuming and labor-intensive; (2) the orientations on the stationary phase are not easily controlled. Herein, a novel one-step synthesis and oriented-immobilization membrane-receptor affinity chromatography (oSOMAC) method was developed to realize high-throughput and accurate drug screening targeting specific domains of membrane receptors.
View Article and Find Full Text PDFIn this study, a novel at-line nanofractionation platform was established for screening SARS-CoV-2 fusion inhibitors from natural products for the first time by combining HPLC-MS/MS with high-throughput fluorescence polarization (FP) bioassay. A time-course FP bioassay in 384 well-plates was conducted in parallel with MS/MS to simultaneously obtain chemical and biological information of potential fusion inhibitors in Lonicerae Japonicae Flos (LJF) and Lianhua Qingwen capsules (LHQW). Semi-preparative liquid chromatography and orthogonal HPLC separation were employed to enrich and better identify the co-eluted components.
View Article and Find Full Text PDFIn this study, a novel magnetic bead-based ligand fishing method was developed for rapid discovery of monoterpene indoles as monoamine oxidase A inhibitors from natural products. In order to improve the screening efficiency, two different magnetic beads, i.e.
View Article and Find Full Text PDFIn this study, a novel piperidinium-sulfonate based zwitterionic hydrophilic monolith was prepared through thermally initiated co-polymerization of a piperidinium-sulfonate monomer 3-(4-((methacryloyloxy)methyl)-1-methylpiperidin-1-ium-1-yl)propane-1-sulfonate (MAMMPS), and a hydrophilic crosslinker N,N'-methylenebisacrylamide (MBA) using n-propanol and HO as porogenic system. Satisfactory mechanical and chemical stabilities, good repeatability and high column efficiency (120,000 N/m) were obtained on the optimal monolith. The resulting poly(MAMMPS-co-MBA) monolith showed a typical HILIC retention behavior over an ACN content range between 5 and 95 %.
View Article and Find Full Text PDFHuman monoamine oxidase B (hMAO-B) has emerged as a pivotal therapeutic target for Parkinson's disease. Due to adverse effects and shortage of commercial drugs, there is a need for novel, highly selective, and reversible hMAO-B inhibitors with good blood-brain barrier permeability. In this study, a high-throughput at-line nanofractionation screening platform was established with extracts from Chuanxiong Rhizoma, which resulted in the discovery of 75 active compounds, including phenolic acids, volatile oils, and phthalides, two of which were highly selective novel natural phthalide hMAO-B inhibitors that were potent, selective, reversible and had good blood‒brain permeability.
View Article and Find Full Text PDFPeptide-based supramolecules exhibit great potential in various fields due to their improved target recognition ability and versatile functions. However, they still suffer from numerous challenges for the biopharmaceutical analysis, including poor self-assembly ability, undesirable ligand-antibody binding rates, and formidable target binding barriers caused by ligand crowding. To tackle these issues, a "polyvalent recognition" strategy employing the CD20 mimotope peptide derivative NBD-FFVLR-GS-WPRWLEN (acting on the CDR domains of rituximab) was proposed to develop supramolecular nanofibers for target antibody recognition.
View Article and Find Full Text PDFAs a pivotal enzyme that regulates dephosphorylation in cell activities and participates in the insulin signaling pathway, protein tyrosine phosphatase 1B (PTP1B) is considered to be an important target for the therapy of diabetes. In this work, a rapid and efficient inhibitor screening method of PTP1B was established based on capillary electrophoresis (CE), and used for screening and evaluating the inhibition effect of Traditional Chinese Medicine on PTP1B. Response Surface Methodology was used for optimizing the conditions of analysis.
View Article and Find Full Text PDFDue to low immobilized ligand density, limited binding capacity, and severe interference from serum proteins, developing ideal peptide-based biomaterials for precise recognition and analysis of biopharmaceuticals remains a huge challenge. In this study, mimotope peptide modified pompon mum-like biomimetic magnetic microparticles (MMPs, 3.8 μm) that mimic the specific functionalities of CD20 on malignant B cells were developed for the first time.
View Article and Find Full Text PDFTo in-depth explore the action mechanism of C-reactive protein (CRP) and precisely study its signaling pathways, it is essential to acquire high-purity CRP while preserving its intact structure and functionality. In this study, we propose and fabricate a high-density 2-methacryloyloxyethyl phosphorylcholine (MPC)-modified membrane roll column (MPC-MRC) using a surface-initiated atom transfer radical polymerization (SI-ATRP) approach, which can overcome these limitations (long incubation time and low adsorption capacity) of conventional enrichment materials. The MPC-MRC incorporates a high-density 2-hydroxyethyl methacrylate polymer brush to prevent non-specific protein adsorption and multiple MPC polymer brush layers for high-performance enrichment of CRP in the company of calcium ions.
View Article and Find Full Text PDFThe accurate and rapid detection of specific antibodies in blood is very important for efficient diagnosis and precise treatment. Conventional methods often suffer from time-consuming operations and/or a narrow detection range. In this work, for the rapid determination of bevacizumab in plasma, a series of chimeric hairpin DNA aptamer-based probes were designed by the modification, labeling and theoretical computation of an original aptamer.
View Article and Find Full Text PDFRapid and effective separation of nucleotides (NTs) and their derivatives is crucial for studying their physiological functions. In this work, we comprehensively evaluated the separation ability of a zwitterionic hydrophilic monolith, i.e.
View Article and Find Full Text PDFEthnopharmacological Relevance: Traditional Chinese Medicines (TCMs) are an important source to discover new anti-infectious drugs. Neuraminidases (NAs) not only play a key role on human health, but also are promising targets for anti-infectious drugs. Arnebia euchroma which is a widely used traditional Chinese medicine with the effect of cooling blood and detoxifying showed potential inhibitory activities on both bacterial NA and virus NA, suggesting that the material basis of A.
View Article and Find Full Text PDFThe kinetic performance of different zwitterionic hydrophilic interaction liquid chromatography polymer columns is evaluated and compared in-depth. For this purpose, two lab-made monolithic columns, synthesized with different crosslinkers, and a commercial particle packed column are considered. It is found that performance evaluation techniques, such as comparing plate height curves or fitted A-, B- and C-terms, obtained by fitting experimental plate height data to a plate height model, are complicated by the determination of a reliable characteristic length.
View Article and Find Full Text PDFSelective enrichment and analysis of therapeutic antibodies in biological fluids are crucial for the development of biopharmaceuticals. Recently, peptide-based affinity chromatography has exhibited fascinating prospects for antibody enrichment due to the high affinity and specificity of small peptides. However, the post-modification approach of peptide ligands on the material surface is complicated and time-consuming.
View Article and Find Full Text PDFPhospholipid-based materials exhibit great application potential in the fields of chemistry, biology, and pharmaceutical sciences. In this study, an inside-out oriented choline phosphate molecule, 2-{2-(methacryloyloxy)ethyldimethylammonium}ethyl -butyl phosphate (MBP), was proposed and verified as a novel ligand of C-reactive protein (CRP) to enrich the functionality of these materials. Compared with phosphorylcholine (PC)-CRP interactions, the binding between MBP and CRP was not affected by the reverse position of phosphate and choline groups and even found more abundant binding sites.
View Article and Find Full Text PDFIn this study, an at-line nanofractionation (ANF) platform was successfully fabricated in parallel with mass spectrometry and trypsin inhibitory bioactivity assessment for rapid screening of trypsin inhibitors (TIs) from natural products for the first time. After systematic optimization, the ANF platform was applied to screen and identify TIs in the extract of a traditional Chinese herb, i.e.
View Article and Find Full Text PDF