Due to complex matrixes and specific reagent deficiency, the rapid detection of histamine is still a challenge to date. Based on the high peroxidase-like activity of iron-cobalt co-doped carbon dots, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established for histamine detection using the mimic enzyme labeled with histamine antibody (His-Ab). Through the competitive binding of the labeled His-Ab to solid-phase and sample antigens, histamine content was detected with a linear range of 2.
View Article and Find Full Text PDFA method for the aptamer-based determination of chloramphenicol (CAP) was developed by exploiting the peroxidase mimicking activity of hemin. The method includes two hemin-modified DNA probes termed P1 and P2. P1, which was modified at its 5' end with one hemin monomer, contains the CAP-binding sequence.
View Article and Find Full Text PDFA fluorescence probe was delicately designed for the detection of malachite green (MG) in water and fish samples. Through the electrostatic self-assembly of CdTe QDs on the surface of polystyrene (PS) microspheres, the fluorescence signal was amplified. After grafting molecularly imprinted film, the fluorescence probe of MIP@PS@CdTe was fabricated and applied to the detection of MG based on fluorescence quenching.
View Article and Find Full Text PDFIn this paper, molecular imprinting and photonic crystal techniques were combined to construct a four-channel sensor array for the simultaneous identification of various sulfonamides. The assay was composed of four units. Three of these units were prepared using sulfaguanidine, sulfamethazine, or sulfathiazole as template molecules.
View Article and Find Full Text PDFA dichromatic label-free aptasensor was described for sulfadimethoxine (SDM) detection. Compared with the binding of SDM-aptamer to SDM, the higher affinity of aptamer to cDNA may result in the hybridization of dsDNA. In the presence of SDM, the aptamer specifically binds to SDM, leading to a blue color of AuNPs in deposit and fluorescence at 530 nm in supernatant after adding cDNA and SGI.
View Article and Find Full Text PDFFluorescence-based aptasensors possess high sensitivity but are complicated and usually require multistep labeling and modification in method design, which severely limit the practical applications. Here, a label-free fluorescence-based aptasensor, consisting of aptamer, gold nanoparticles (AuNPs), and cadmium telluride (CdTe) quantum dots (QDs), was developed for the detection of sulfadimethoxine (SDM) in water and fish based on the specific recognition of SDM-aptamer and the inner filter effect of QDs and AuNPs. In the absence of a target, AuNPs dispersed in salt solution because of the aptamer protection, which could effectively quench the fluorescence emission of QDs, while in the presence of SDM, AuNPs aggregated due to the specific recognition of SDM-aptamer to SDM, which resulted in fluorescence recovery.
View Article and Find Full Text PDFA facile and practical ratiometric fluorescence probe based on two CdTe quantum dots (QDs) coated with molecularly imprinted polymers (MIPs) was prepared for the detection of trace malachite green (MG) in fish. Two CdTe QDs coated with MIPs were fabricated by a one-pot method using MG, (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) as template, functional monomer, and cross-linker, respectively. CdTe QDs with λ 530 nm (gQDs) and 630 nm (rQDs) were used as the referential fluorophore and target sensitive fluorophore, respectively.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2019
Spectrochim Acta A Mol Biomol Spectrosc
May 2018
Spectrochim Acta A Mol Biomol Spectrosc
February 2018
A sensitive fluorescence sensor for the detection of malachite green (MG) was fabricated by grafting molecularly imprinted polymers (MIPs) onto the surface of CdTe quantum dots (QDs). The MIP-coated QDs were synthesized via a reverse microemulsion method using (3-aminopropyl)triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) as functional monomer and cross-linker, respectively. The optimum molar ratio of MG, functional monomer and cross-linker was 1:3:10.
View Article and Find Full Text PDFA highly selective and sensitive enzyme-linked immunosorbent assay (ELISA) was developed for the detection of malachite green (MG) using a molecularly imprinted polymer (MIP) film as bionic antibody. The MIP film, based on the self-polymerization of dopamine, was fabricated on the surfaces of a 96-well microplate. It showed specific recognition for MG in aqueous solution.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
November 2016
A direct competitive enzyme-linked immunosorbent assay (ELISA) method was used for the detection of malachite green (MG) with a high sensitivity and selectivity using magnetic molecularly imprinted polymers (MMIPs) as a bionic antibody. MMIPs were prepared through emulsion polymerization using FeO nanoparticles as magnetic nuclei, MG as a template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent and span-80/tween-80 as mixed emulsifiers. The MMIPs were characterized by scanning electron micrographs (SEM), thermal-gravimetric analyzer (TGA), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer (VSM), respectively.
View Article and Find Full Text PDFThe structural and electrical properties of a metal-halide cubic perovskite, CH(3)NH(3)SnI(3), have been examined. The band structure, obtained using first-principles calculation, reveals a well-defined band gap at the Fermi level. However, the temperature dependence of the single-crystal electrical conductivity shows metallic behavior down to low temperatures.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
May 2004
Five novel organic-molybdenum phosphates with [(PO4)4Mo6(V)O15]12- cluster, Na x (H4TETA)3 x (H3O)5 x {Zn[(HPO4)2(PO4)2Mo6O15]2} (2), (H2en)7 x (H3O)4 x {Cu[(HPO4)2(PO4)2Mo6O15]2} x H2O (3), (H3DETA)2 x (H3O)3 x {Co0.5[(HPO4)2(PO4)2Mo6O15]} x H2O (4), [Co(H3TETA)]2{Co0.5[(HPO4)(PO4)3Mo6O15] x 3.
View Article and Find Full Text PDFThree novel organic-molybdenum phosphates with [(PO4)2Mo5O15], namely (NH3CH2CH2NH3)2.5[(PO4)(HPO4) Mo5O15].7.
View Article and Find Full Text PDFThe paper reports a new molybdenum phosphate (NH3CH2CH2NH3)7H2[NaMo12O30(PO4)2(HPO4)5(H2PO4)].7H2O containing Mo(V) which is hydrothermally synthesized and spectrally characterized by FTIR, Raman and UV/Vis DRS. The result indicates long Mo(V)-O bonds and innumerable hydrogen bonds in compound cause the red shift of characteristic vibrations in IR spectrum of title compound.
View Article and Find Full Text PDF