Publications by authors named "Zheng-yun Zhao"

Patient-derived xenograft (PDX) models are effective preclinical cancer models that reproduce the tumor microenvironment of the human body. The methods have been widely used for drug screening, biomarker development, co-clinical trials, and personalized medicine. However, the low success rate and the long tumorigenesis period have largely limited their usage.

View Article and Find Full Text PDF

Tumor samples of pancreatic ductal adenocarcinoma patients, who underwent resection surgery, were implanted into NOD/SCID mice to construct pancreatic cancer patient-derived xenograft (PDX) models and explore the biological changes in the different generations of PDXs. Ten PDXs were successfully generated, and the tumor formation rate of F1 PDXs was found to be 38.46%, which was lower than F2 (77.

View Article and Find Full Text PDF

The labelling of DNA oligonucleotides with signalling groups that give a unique response to duplex formation depending on the target sequence is a highly effective strategy in the design of DNA-based hybridisation sensors. A key challenge in the design of these so-called base discriminating probes (BDPs) is to understand how the local environment of the signalling group affects the sensing response. The work herein describes a comprehensive study involving a variety of photophysical techniques, NMR studies and molecular dynamics simulations, on anthracene-tagged oligonucleotide probes that can sense single base changes (point variants) in target DNA strands.

View Article and Find Full Text PDF

The ability to discriminate between epigenetic variants in DNA is a necessary tool if we are to increase our understanding of the roles that they play in various biological processes and medical conditions. Herein, it is demonstrated how a simple two-step fluorescent probe assay can be used to differentiate all three major epigenetic variants of cytosine at a single locus site in a target strand of DNA.

View Article and Find Full Text PDF

Förster resonance energy transfer (FRET) technology relies on the close proximity of two compatible fluorophores for energy transfer. Tagged (Cy3 and Cy5) complementary DNA strands forming a stable duplex and a doubly-tagged single strand were shown to demonstrate FRET outside of a cellular environment. FRET was also observed after transfecting these DNA strands into fixed and live cells using methods such as microinjection and electroporation, but not when using lipid based transfection reagents, unless in the presence of the endosomal acidification inhibitor bafilomycin.

View Article and Find Full Text PDF

The design, synthesis and electrochemical behaviour of an oligomer consisting of linked thymine-functionalised ferrocene units are reported, which, as a so-called form of ferrocene nucleic acid (FcNA), acts as a structural mimic of DNA.

View Article and Find Full Text PDF

Modified DNA strands undergo a reversible light-induced reaction involving the intramolecular photodimerization of two appended anthracene tags. The photodimers exhibit markedly different binding behavior toward a complementary strand that depends on the number of bases between the modified positions. By preforming the duplex, photochromism can be suppressed, illustrating dual-mode gated behavior.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers identified single nucleotide polymorphisms (SNPs) in a prostate cancer-related gene using special DNA probes with fluorophores that glow.
  • The unique design of these probes allows them to bind to target sequences and either increase or decrease their fluorescence, depending on the characteristics of the sequences.
  • This fluorescence change helps distinguish between matching and mismatching base pairs near the SNP site for effective detection.
View Article and Find Full Text PDF
Article Synopsis
  • A fluorescent DNA probe with an anthracene group can detect all four DNA bases (A, T, C, G) at the same location.
  • The probe uses an anucleosidic linker to effectively bind to the DNA.
  • It also identifies the epigenetic modification C/5-MeC through a specific hybridization sensing assay.
View Article and Find Full Text PDF

The synthesis of a novel C4-linked C2-imidazole ribonucleoside phosphoramidite (ICN-C2-PA 1) with a two-carbon linker between imidazole and ribose moieties is described. In the phosphoramidite, POM and 2-cyanoethyl groups were selected to protect the endocyclic amine function of imidazole and the 2'-hydroxyl function of D-ribose, respectively. The C2-imidazole nucleoside, a flexible structural mimic of a purine nucleobase, was successfully incorporated using ICN-C2-PA 1 into position 638 of the VS ribozyme through 2'-TBDMS chemistry to study the role of G638 in general acid-base catalysis.

View Article and Find Full Text PDF

Nucleoside phosphoramidites are the most widely used building blocks in contemporary solid-phase synthesis of oligonucleotides. The accurate molecular weight measurements of such molecules, which are acid-labile compounds, may be easily determined by mass spectrometry using a matrix system, triethanolamine/NaCl, on a liquid secondary ion mass spectrometer (LSIMS) or fast-atom bombardment (FAB) MS equipped with a double-focusing mass spectrometer. The present method rapidly and easily measures the accurate molecular weights of various phosphoramidites as adduct ions [M+Na]+ with an average mass error smaller than 0.

View Article and Find Full Text PDF

RNA catalysis is important in the processing and translation of RNA molecules, yet the mechanisms of catalysis are still unclear in most cases. We have studied the role of nucleobase catalysis in the hairpin ribozyme, where the scissile phosphate is juxtaposed between guanine and adenine bases. We show that a modified ribozyme in which guanine 8 has been substituted by an imidazole base is active in both cleavage and ligation, with ligation rates 10-fold faster than cleavage.

View Article and Find Full Text PDF

We constructed a modified form of the VS ribozyme containing an imidazole ring in place of adenine at position 756. The novel ribozyme is active in both cleavage and ligation reactions. The reaction is efficient, although relatively slow.

View Article and Find Full Text PDF

The VS ribozyme catalyses the site-specific cleavage of a phosphodiester linkage by a transesterification reaction that entails the attack of the neighbouring 2'-oxygen with departure of the 5'-oxygen. We have previously suggested that the A730 loop is an important component of the active site of the ribozyme, and that A756 is especially important in the cleavage reaction. Functional group modification experiments reported here indicate that the base of A756 is more important than its ribose for catalysis.

View Article and Find Full Text PDF