Publications by authors named "Zheng-yong Xu"

The experiment was carried out in a sequencing batch reactor (SBR), using granular sludge with 90% shortcut nitrification accumulation ratio, which had been cultivated by the laboratory to seed the reactor. The effects of temperature on characteristics, stability, nitrogen conversion properties and activity of short-cut nitrification granular sludge were investigated. The results show that the temperature has a significant influence on structure and short-cut nitrification performance of short-cut nitrification granular sludge.

View Article and Find Full Text PDF

The method of continuous thermophilic composting (CTC) remarkably shortened the active composting cycle and enhanced the compost stability. Effects of CTC on the quantities of bacteria, with a comparison to the traditional composting (TC) method, were explored by plate count with incubation at 30, 40 and 50°C, respectively, and by quantitative PCR targeting the universal bacterial 16S rRNA genes and the Bacillus 16S rRNA genes. The comparison of cultivatable or uncultivatable bacterial numbers indicated that CTC might have increased the biomass of bacteria, especially Bacillus spp.

View Article and Find Full Text PDF

Through controlling the concentration of free ammonia in the sequencing batch reactor (SBR), the single-stage autotrophic biological nitrogen removal process was achieved, including partial nitrification and anaerobic ammonium oxidation. The experiment was completed via two steps, the enrichment of nitrite bacteria and the inoculation of the mixture of anammox biomass. The operating temperature in the SBR was (31 +/- 2) degrees C.

View Article and Find Full Text PDF

This study aims at evaluating the impacts of PAM addition on activated sludge performance. Four lab-scale sequencing batch reactors (SBRs), each with a working volume of 3L, were investigated with different PAM concentrations. Experiments were conducted with varying organic loading rate and the sludge volume index (SVI), particle size, zeta potential, specific oxygen uptake rate (SOUR), mixed liquor suspended solids (MLSS), COD and ammonium removal efficiency were monitored over a 105-day period.

View Article and Find Full Text PDF

Actinomycetes degrade cellulose and solubilize lignin during composting. Changes in the diversity of the actinomycetal communities and the 16S rDNA copy numbers of actinomycetes were monitored by denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR), respectively, during continuous thermophilic composting (CTC) and traditional composting (TC). qPCR indicated that the copy numbers from the CTC samples were 25-80% higher than those from the TC samples during similar phases of active composting and they were lower than 3×10(9) gene copies/g (dry weight) in the mature compost from both runs.

View Article and Find Full Text PDF

A biological treatment with the integration of partial nitrification, anaerobic ammonium oxidation (Anammox) and heterotrophic denitrification was successfully developed in a SBR with periodical air supply to treat landfill leachate. An operating temperature of 30+/-1 degrees C and a dissolved oxygen concentration within 1.0-1.

View Article and Find Full Text PDF

Fewer and fewer municipal solid wastes are treated by composting in China because of the disadvantages of enormous investment, long processing cycle and unstable products in a conventional composting treatment. In this study, a continuous thermophilic composting (CTC) method, only a thermophilic phase within the process, has been applied to four bench-scale composting runs, and further compared with a conventional composting run by assessing the indexes of pH, total organic carbon (TOC), total Kjeldahl nitrogen (TKN), C/N ratio, germination index (GI), specific oxygen uptake rate (SOUR), dissolved organic carbon (DOC) and dehydrogenase activity. After composting for 14 days, 16 days, 18 days and 19 days in the four CTC runs, respectively, mature compost products were obtained, with quality similar to or better than which had been stabilized for 28 days in run A.

View Article and Find Full Text PDF

The difference of sequencing batch biofilm reactor (SBBR) performance and nitrogen transformation mechanism which caused by four different influent patterns were researched. Through variance analysis of SBBR performance, microbial community structure and nitrogen transformation, the results indicated that, on the one hand the dispersed influent pattern displayed higher anti-load ability than the centralized one, under the same efficiency, COD and ammonia load of the dispersed M4 reached 2540 mg x (L x d)(-1) and 540 mg x (L x d)(-1) respectively compared with 2000 mg x (L x d)(-1) and 420 mg x (L x d)(-1) by the centralized M1; on the other hand, considering the dispersed influent pattern, the closer influent mood was to the cycle mood of operation, the higher the nitrogen transformation efficiency was, which finally led residual nitrogen concentration declined.

View Article and Find Full Text PDF

At the high level of dissolved oxygen (DO) in sequencing batch biofilm reactor (SBBR), the approach and mechanism for realizing shortcut nitrification were researched. Landfill leachate was used as handling of object, the mainly environment parameters of the reactor were controlled as follow: DO 5 mg/L, pH 7.0, temperature 25 degrees C, adopted all drainage mode and 12-hour cycle influent.

View Article and Find Full Text PDF

The conventional microorganism techniques and the molecule biological techniques such as PCR and DGGE were utilized to study the approaches of biological nitrogen removal in a single sequencing batch biofilm reactor (SBBR). The main approach of biological nitrogen removal, no less than 65% of the total NH4(+)-N was removed in this approach, was composed of partial nitrification, anaerobic ammonium oxidation and denitrification. The second approach included twain processes such as partial nitrification and denitrification, and the third one was conventional nitrogen removal process (nitrification and denitrification).

View Article and Find Full Text PDF

For studying the bacterial diversity and the mechanism of denitrification in sequencing bath biofilm reactor (SBBR) treating landfill leachate to provide microbial evidence for technique improvements, total microbial DNA was extracted from samples which were collected from natural landfill leachate and biofilm of a SBBR that could efficiently remove NH4+ -N and COD of high concentration. 16S rDNA fragments were amplified from the total DNA successfully using a pair of universal bacterial 16S rDNA primer, GC341F and 907R, and then were used for denaturing gradient gel electrophoresis (DGGE) analysis. The bands in the gel were analyzed by statistical methods and excided from the gel for sequencing, and the sequences were used for homology analysis and then two phylogenetic trees were constructed using DNAStar software.

View Article and Find Full Text PDF