Publications by authors named "Zheng-ji Zhou"

Kesterite CuZnSn(S,Se) (CZTSSe) has been considered as the most promising absorber material for inorganic thin-film solar cells. Among the three main interfaces in CZTSSe-based solar cells, the CZTSSe/Mo back interface plays an essential role in hole extraction as well as device performance. During the selenization process, the reaction between CZTSSe and Mo is one of the main reasons that lead to a large open circuit voltage () deficit, low short circuit current (), and fill factor.

View Article and Find Full Text PDF

The main bottleneck in the development of kesterite CuZnSn(S,Se) (CZTSSe) solar cells is their very low due to severe carrier recombination. Specifically, due to the poor defect environment and unfavorable band structure, carrier recombination at the front interface is considered to be one of the most serious issues. Thus, to reduce the interface recombination and deficit, we propose a convenient and effective strategy for Cd gradient doping near the front interface during selenization.

View Article and Find Full Text PDF

In this study, ZnO nanotubes (ZNTs) were prepared onto fluorine-doped tin oxide (FTO) glass and used as supports for MIPs arrays fabrication. Due to the imprinted cavities are always located at both inner and outer surface of ZNTs, these ZNTs supported MIPs arrays have good accessibility towards template and can be used as sensing materials for chemical sensors with high sensitivity, excellent selectivity and fast response. Using K[Fe(CN)] as electron probe, the fabricated electrochemical sensor shows two linear dynamic ranges (0.

View Article and Find Full Text PDF

p-type inorganic hole transport materials of Li, Cu-codoped NiOx films were deposited using a simple solution-based process. The as-prepared films were used as hole selective contacts for lead halide perovskite solar cell. An enhanced power conversion efficiency of 14.

View Article and Find Full Text PDF

CZTS exhibited apparently phase-dependent photocatalytic H2 evolution under visible light. Possible factors for the phase-dependent photocatalytic activity of CZTS were discussed in detail.

View Article and Find Full Text PDF

In this work, we employed a convenient one-step synthesis method for synthesizing Cu2ZnSnSe4 (CZTSe) nanocrystals (NCs) in an excess selenium environment. This excess selenium situation enhanced the reaction of metal acetylacetonates with selenium, resulting in the burst nucleation of NCs at relatively low temperatures. The phase morphology and surface and optoelectronic properties of NCs before and after ligand exchange were discussed in depth.

View Article and Find Full Text PDF

Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.

View Article and Find Full Text PDF

On the bright side: A solution-based strategy was developed for in situ synthesis and film deposition of Cu2ZnSnSe4 nanocrystal films (samples a-d). The obtained Cu2ZnSnSe4 nanocrystal films can be used as an effective counter-electrode (CE) material to replace Pt, and yield low-cost, high-efficiency dye-sensitized solar cells (DSSCs). The assembled solar cell devices exhibit an efficiency of 7.

View Article and Find Full Text PDF

Surfactant-free CuInS2 (CIS) nanocrystals (NCs) were synthesized by replacing organic capping ligands with inorganic ions S(2-). The efficacy of ligand exchange was probed by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis spectroscopy, and Fourier-transform infrared (FTIR). The surfactant-free CIS NCs films were obtained by drop-casting onto the clean FTO glass.

View Article and Find Full Text PDF

Cu(2)ZnSnSe(4) (CZTSe) nanoparticles with diameters of 200-300 nm were synthesized by one-step solvothermal method without surfactants or templates. The structure, composition and morphology of CZTSe nanoparticles were characterized by XRD, XPS, Raman spectrum, EDS, FESEM and TEM. The results indicated that the nanoparticles were single phase and nearly stoichiometric composition.

View Article and Find Full Text PDF

One-dimensional semiconductor nanostructures grown directly onto transparent conducting oxide substrates with a high internal surface area are most desirable for high-efficiency dye-sensitized solar cells (DSSCs). Herein, we present a multicycle hydrothermal synthesis process to produce vertically aligned, single crystal rutile TiO(2) nanowires with different lengths between 1 and 8 μm for application as the working electrode in DSSCs. Optimum performance was obtained with a TiO(2) nanowire length of 2.

View Article and Find Full Text PDF

One-dimensional semiconductor architectures are receiving attention in preparing photovoltaic solar cells because of its superior charge transport as well as excellent light-harvesting efficiency. In this study, vertically aligned single-crystalline TiO(2) nanorods array was grown directly on transparent conductive glass (FTO), and then CuInS(2) nanocrystals were deposited on nanorods array by spin coating method to form TiO(2)/CuInS(2) heterostructure films. The resulting nanostructure assembly and composition was confirmed by field-emission scanning electron microscope (FESEM) , transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction(XRD).

View Article and Find Full Text PDF